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Abstract—The Global Flood Monitoring (GFM) system of the
Copernicus Emergency Management Service addresses the chal-
lenges and impacts that are caused by flooding. The GFM system
provides global, near-real-time flood extent masks for each newly
acquired Sentinel-1 Interferometric wide swath synthetic aperture
radar (SAR) image, as well as flood information from the whole
Sentinel-1 archive from 2015 on. The GFM flood extent is an
ensemble product based on a combination of three independently
developed flood mapping algorithms that individually derive the
flood information from Sentinel-1 data. Each flood algorithm also
provides classification uncertainty information that is aggregated
into the GFM ensemble likelihood product as the mean of the indi-
vidual classification likelihoods. As the flood detection algorithms
derive uncertainty information with different methods, the value
range of the three input likelihoods must be harmonized to a range
from low [0] to high [100] flood likelihood. The ensemble likelihood
is evaluated on two test sites in Myanmar and Somalia, showcasing
the performance during an actual flood event and an area with
challenging conditions for SAR-based flood detection. The Myan-
mar use case demonstrates the robustness if flood detections in the
ensemble step disagree and how that information is communicated
to the end-user. The Somalia use case demonstrates a setting where
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misclassifications are likely, how the ensemble process mitigates
false detections and how the flood likelihoods can be interpreted to
use such results with adequate caution.

Index Terms—Copernicus Emergency Management Service
(CEMS), Earth observation, ensemble classification, flood moni-
toring, likelihoods, radar, uncertainties, sentinel-1.

1. INTRODUCTION

ITH an amount of 44 % [1] of all occurring disasters and
W produced economic losses of about 651 billion dollars,
floods are among the most severe disasters worldwide. Although
not the deadliest natural disaster, floods are affecting the largest
number of people worldwide every year. With globally rising
temperatures, Dottori et al. [2] predict an increase in human
losses due to flooding by up to 70% to 83% and additional
direct flood damages upward of 160% to 240%. Botzen et al. [3]
identified population and economic growth in disaster-prone
regions as key causes leading to this increase. Apart from human
losses, floods may cause damages to (critical) infrastructure [4]
and may lead to further cascading effects, such as the spread of
infectious diseases [5].

Mitigating these effects requires coordinated action on mul-
tiple levels, including but not limited to the implementation of
accurate early warning systems, constant monitoring of disaster-
prone regions, and well-implemented risk management proce-
dures [6]. Arguably, the monitoring requirement, especially at
large scale, is currently best fulfilled through the utilization of
Earth observation data. Grimaldi et al. [7] presented a review of
different flood data sources and compared optical with synthetic
aperture radar (SAR) sensors. Optical imagery mainly relies on
cloud-free and illuminated data, whereas radar remote sensing
satellites can operate day and night due to their ability to emit
cloud penetrating microwaves.

Past studies already highlighted the potential of a synergetic
use of optical and SAR data in flood mapping [8] and [9]. How-
ever, most studies focus on a single technology, most frequently
microwave remote sensing [10], [11], [12], [13]. A comprehen-
sive overview of advantages and limitations of different methods
is found in [14]. The fusion of Sentinel-1 and Sentinel-2 data to
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derive reference water masks is described in [15]. The authors
further elaborate on the different observation principles with the
result of deviating water masks. This information deems useful
for the utilization of validation data.

It can be noted that the aforementioned studies either focus
on specific regions or were not implemented as operational ser-
vices. Furthermore, a majority of the studies do not provide any
information on the flood classification uncertainties. Clement
et al. [10] highlighted several sources of uncertainty affecting
SAR-based flood extent mapping, for example the ambiguities
related to similar backscatter return over water look-alikes and
dry soil, as well as areas with fuzzy backscatter response, e.g.,
dense vegetation, and areas with higher backscatter return over
urban areas. In general, cases where SAR-based flood mapping
may be hampered and the detection may become less confident,
the classification necessitates and benefits from the inclusion of a
dedicated uncertainty analysis [16]. This complementary output
also supports the interpretation and use of SAR-based flood
map products, where end-users can be alerted to flood features
associated with lower confidence, which should be treated with
more caution with respect to risk assessment.

The absence of a fully operational flood service that also
returns confidence information culminated in the request of
the Copernicus Emergency Management Service (CEMS) to
integrate technically mature and scientifically validated flood
detection algorithms into the Global Flood Awareness System
(GloFAS) ! and the European Flood Awareness System (EFAS).2
Instead of utilizing an approach based on a single retrieval
algorithm, the Joint Research Centre (JRC) as the contracting
authority adopted an ensemble approach, which merges the
results of three matured and independently developed flood
algorithms.

A. Conceptual Basis of GFM Ensemble

The Global Flood Monitoring (GFM) product of the CEMS
continuously processes and analyzes all incoming Sentinel-1
ground range detected (GRD) interferometric wide swath (IW)
data, aiming to detect and monitor flood events in near real-time
at global scale.

The GFM product builds on an ensemble approach that com-
bines three mature and independently developed flood detection
algorithms provided by the German Aerospace Center (DLR),
Luxembourg Institute of Science and Technology (LIST) and
Vienna University of Technology (TUW). The flood ensemble
is computed pixelwise and based on a majority voting system,
where at least two algorithms must classify a pixel as flooded or
non-flooded. Further insight into the flood ensemble algorithm
is described by [17] and the GFM product definition docu-
ment [18]. Hostache et al. [19] presented a performance analysis
of each of the individual flood detection algorithms and shows
similar accuracies over three test cases that were investigated in
the GFM project.

Besides a pixel-based flood classification, each flood detec-
tion algorithm generates classification uncertainty information

![Online]. Available: https://www.globalfloods.eu/
2[Online]. Available: https://www.efas.eu/
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in the form of likelihoods. The GFM ensemble algorithm then
combines the three individual layers of uncertainty information
into a single layer termed ensemble likelihood. Although, an
uncertainty analysis is performed, the term likelihood is used
instead of uncertainty; most users have an a priori understanding
about likelihoods, whereas uncertainties describe a negation
which may not be understood as intuitively.

The GFM product is composed of different layers supporting
the interpretation of flood situations using remote sensing data.
Besides the actual flood extent layer, users can also download
the likelihood data from GloFAS and EFAS. In addition, a
downloadable exclusion layer informs about regions where no
flood delineation was possible. These areas correspond to nodata
values in both of the flood and likelihood products.

B. Objectives of Ensemble Flood Detection and Interpretation
of Ensemble Likelihoods

Two sets of objectives drive the ensemble-based flood detec-
tion and the manner in which ensemble likelihoods are intended
to be interpreted and applied by two user communities: 1) inte-
grating results into further processes or studies and 2) utilizing
results for decision-making processes.

The first objective addresses the first community, consisting
of algorithm developers and scientists. Ensemble likelihoods
may be used by them to identify subsets of pixels associated
with low confidence values as a way to gain insights about
opportunities for improving algorithms so that they return more
accurate predictions. The individual and combined likelihoods
may also serve as a basis for intercomparing the results obtained
by different approaches, thereby potentially improving our un-
derstanding of their strengths and weaknesses.

The second community are data (end-)users. They may use
ensemble likelihoods to minimize adverse consequences of
making potentially costly decisions based on highly uncertain
information. Results of this study may thus provide a basis on
how the two aforementioned use cases can be used to support
decision-making for flood and non-flood events.

In particular, to evaluate the impact of differential decisions
made based on flood classifications with and without considera-
tion of ensemble likelihood values, we examine two land cover
types (i.e., agricultural lands, built environments) of particularly
high economic importance and social consequences. In effect,
mean likelihoods serve as a heuristic indication of overall con-
fidence in the flood prediction, based on an average of available
flood and respective uncertainty outputs from contributing indi-
vidual flood algorithms. The values also function as an indicator
of the current capacities/confidence of ensemble algorithms to
detect water over certain types of land covers and uses.

This study focuses on gaining insights on scenarios that result
in regular and overdetections with respect to dominant land
covers. Based on the results, benefits, and limitations of the
ensemble likelihood approach are highlighted and provide a
starting point to guide further developments and applications
in the two communities.

The application of ensemble likelihoods is evaluated with
two use cases exemplifying flood (Myanmar use case) and
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Fig. 1. Confidence distribution of likelihood values. Likelihood values toward
0 correspond to higher confidence in non-flood classifications, whereas values
toward 100 correspond to higher confidence in flood classifications. Low confi-
dence in both classifications is indicated by likelihood values toward 50.

non-flood (Somalia use case) events, respectively. The Myanmar
use case was also investigated during the development phase of
the project.

In particular, the objectives are to accurately delineate flood
extent, while minimizing over and underdetection. Extension of
case-based assessments provide useful insights on the general-
izability of the flood monitoring algorithm on a global scale with
respect to a more comprehensive range of land covers/uses.

Subsequent sections provide detailed descriptions about how
each individual flood algorithm generates uncertainty informa-
tion as in Section II, the generation and evaluation of ensemble
likelihoods are presented in Section III. Data used to conduct the
study is described in Section IV, followed by results in Section V
and discussion in Section VI. Finally, Section VII concludes this
article.

II. ALGORITHM LIKELIHOODS

The GFM flood ensemble likelihood product attributes to
each valid pixel a likelihood of being flooded given its recorded
Sentinel-1 backscatter value and ancillary data inputs. The
term valid refers to pixels that are considered to be potentially
flooded and included in the computation. Invalid pixels are
excluded through an exclusion mask. This mask excluded ar-
eas blocked by radar shadow, regions of no Sentinel-1 SAR
sensitivity toward flood dynamics, or areas that are considered
non-floodable, as they are located too far away from the next
drainage [20].

Ensemble likelihoods are defined in the interval [0, 100].
Likelihood values toward O represent lowest confidence in the
ensemble flood classification, whereas values toward 100 rep-
resent highest confidence. Ensemble likelihoods are used to
convert the set of ensemble classifications into a single binary
flood classification, representing non-flood pixels as 0 and flood
pixels as 1, respectively. In this binarization step, a likelihood
value of 50 is defined as the threshold value that separates
the two classes (i.e., non-flood pixels from the interval [0, 49]
and flood pixels from the interval [50, 100]). Confidence about
the detection of each respective class increases with likelihood
values toward the lower or higher class boundaries (see Fig. 1).

The ensemble likelihood value is computed pixelwise as the
mean of the likelihood values attributed to each valid pixel
by the three algorithms. The following sections describe the
independent generation of each set of values.

In general, all likelihoods are in reference to a flood classi-
fication. If the likelihood is low over a certain pixel or feature,
the classification confidence that the pixel or feature is flooded
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is also low. The specific terms that are further evaluated in the
next sections are defined as follows.

1) Individual Likelihood Values: refer to pixelwise likelihood
information generated by each of the three flood algo-
rithms (i.e., DLR, LIST, TUW).

2) Initial Mean Likelihood Values: are computed pixelwise
based on the average of all available individual likelihood
information, ideally generated by all three flood algo-
rithms, prior to the application of the ensemble algorithm.

3) Ensemble Likelihood Values: are updated likelihood val-
ues based on the initial mean likelihood after the ensemble
algorithm is applied.

The ensemble algorithm combines the flood detection and
likelihood outputs of the individual flood algorithms. Although
a majority voting system is implemented, split situations, i.e.,
cases of classification disagreement occur where a majority
cannot be achieved, e.g., when one out of three algorithms yields
a nodata pixel.

Post-processing steps involve the exclusion of subareas within
a given Sentinel-1 scene that overlap with the reference water
and exclusion masks. Clusters with a size less than a defined
threshold of flood pixels are assumed to be unlikely flooded
and relabeled as non-flood pixels. This action is termed a blob
removal step and eliminates small fragmented patches. Results
following these steps are then referred to as ensemble classi-
fications, see [21] and [18]. Likelihood values corresponding
to formerly flooded but excluded pixels are set to a likeli-
hood value of 0. Likelihood values corresponding to formerly
flooded but blob-removed pixels are set to a likelihood value
of 49, i.e., expressing the lowest confidence in the non-flood
regime.

The ensemble algorithm can be applied based on two ap-
proaches: 1) split and 2) consensus. The split approach considers
the likelihood values associated with the respective classifica-
tion of each flood algorithm and favors the classification with
the highest confidence. The consensus approach is based on
majority voting, which sets all split situations to non-flooded
classifications, since only 2/3 flood algorithms generate valid but
conflicting pixelwise classifications. In effect, a flood classifica-
tion is only returned when there is an agreement. The following
subsections describe the individual likelihood layers produced
by the individual flood detection algorithms.

A. Computation of DLR Fuzzy Values

The flood detection algorithm by DLR is a single scene
approach, i.e., the main data input for flood inundation is a
single Sentinel-1 observation. The DLR algorithm applies fuzzy
logic post-processing to measure and to reduce the uncertainty
associated with the water classification, originally described
by [22] and [23]. The algorithm was originally built as part
of a flood service, hence, using a single scene approach. The
development of the system is given with [24] and [25]. Martinis
et al. [26] further outlined advantages and limitations of various
flood detection approaches.

Three cases influence classification uncertainty. In particular,
the likelihood of a pixel being classified as water is low:
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Fig. 2. Fuzzy logic approach for discriminating between water and non-water
classes based on SAR backscatter values, denoted as o Sentinel-1 backscatter
[dB].

1) ifits radar backscatter is close to the automatically derived
threshold 7, separating water and non-water;

2) if the slope at that location is high, since steeper surfaces
are unlikely to retain water;

3) if that pixel is connected to other neighboring water pixels
and the resulting area is relatively small. On the contrary,
the uncertainty is low if the pixel is connected to other
neighboring water pixels and the resulting area is relatively
large.

The three cases or parameters, namely, backscatter of the
normalized radar cross section (NRCS), slope, and minimum
mapping unit are evaluated separately, resulting in the generation
of three fuzzy layers. The concept of the fuzzy logic step is
exemplified with the consideration of SAR backscatter values.

Fig. 2 illustrates the application of the fuzzy logic approach
to address the first case where SAR backscatter is uncertain. In
Fig. 2(a), the water/non-water separating threshold 7 is defined
as the upper fuzzy value x,. This value represents the boundary
between both classes, where the likelihood of a correct classi-
fication is the lowest. The mean backscatter value of the class
Water [lyater 18 associated with a minimum fuzzy value x;. Pal
and Rosenfeld [27] described the negative S-function that maps
numeric to fuzzy values which is also depicted in Fig. 2(b).

As the majority of water pixels have backscatter values around
the mean backscatter value, the uncertainty of a correct classi-
fication of these water pixels is low. The fuzzy logic approach
maps high uncertainties to low degrees of membership to a par-
ticular class. For instance, high uncertainty of a correct pixelwise
classification to the water class corresponds to a low degree
of membership to that class. The pixel is, therefore, assigned
a lower fuzzy value. The converse is also true, where a low
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uncertainty corresponds to a high degree of membership of a
given pixel to the water class; it is assigned a high fuzzy value.

The three individual fuzzy membership functions are in the
range [0, 1]. For easier interpretation and lower storage re-
quirements, float values were rescaled to the range [0, 100].
The resulting fuzzy layer is computed as the mean of all three
individual fuzzy layers. A defuzzification value of 60 is defined
as the threshold to mark the distinction between water and
non-water classes.

Pixels classified as water with a fuzzy value of > 60 are treated
as water detections of high confidence.

B. Computation of LIST Probabilities

The flood detection algorithm by LIST applies a change-
detection approach [28], i.e., the flood inundation is performed
by detecting backscatter changes of two consecutive Sentinel-1
observations, the most recent SAR scene I} with the overlap-
ping SAR scene acquired from the same orbit called reference
SAR scene It%l. As it is a change detection algorithm, it aims
at detecting and mapping all decreases of backscattering values
with respect to a reference one. A change detection approach
is adopted because it allows to differentiate floodwater from
permanent water bodies and, at the same time, filter out classes
having water-like backscattering values, such as shadows or
smooth surfaces. The floodwater extent for the actual event is
described with I3 and the image difference to the preevent
situation is described with 3! = I, — I3'. The likelihood of
floodwater classification is characterized by flood probability.

Both 3! and I3} are used for likelihood estimation, the
pixels that have high posterior probability of both water class and
change class are likely to be real flooded pixels. The probability
of being flooded for a given pixel (1) is defined as the minimum
value between the conditional probability of the water class
p(W|o?) and the conditional probability of the changed class
p(C|Ac?) with regards to the Sentinel-1 backscatter o°

p (Flo®, Ad®) = min (p (W]o") .p (C|Ac®)) (1)

where p(c?) is the marginal distribution of backscatter values
in I;3! and p(Ac®) is the marginal distribution of backscatter
difference values in IP!. In case a pixel is also flooded in the
reference image, only I3} is considered for likelihood estimation
of flood classification as follows:

p(Flo®) =p (W|o?). 2)

As in this case, the likelihood is only calculated from the
backscatter value in I;3!, false high flood probability can be
caused by permanent water and other water look-alike dark
areas, these false alarms in binary map has been removed by
comparing the resulting flood map with the previous flood map.
To reduce these false high probabilities in current likelihood
map, for non-flood pixels in the new flood map, their flood
probability is the minimum value between p(W|o) and the
value in the latest previous likelihood map.
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C. Computation of TUW Uncertainties

The flood algorithm by TUW is based on a data cube approach,
as introduced by [29], and builds upon a priori probability
parameters for flood and non-flood conditions generated from
Sentinel-1 time series. Incoming Sentinel-1 scenes that are
subject to flood mapping are classified by means of Bayesian
inference, which is not only computationally slim and NRT-
suitable, but also intrinsically yields likelihood values in terms
of posterior probabilities of the class allocation. For each pixel
in a new Sentinel-1 backscatter measurement, the probability of
belonging to either the flood or the non-flood class is inferred.

Based on the Bayes decision rule, higher (“winning”) pos-
terior probabilities define then the class allocation. In addition,
the conditional error p(error|c”) can be defined by the lower
posterior probability as follows:

p (error|o®) = min [p (F[sigma’) ,p (NF|o°)]  (3)

where p (F|sigma”) describes the probability of the flood class
and p (NF|o®) the probability of the non-flood class with
respect to the Sentinel-1 backscatter o°.

The conditional error as direct measure for uncertainty en-
ables direct quantification of the lack of confidence with respect
to a given decision. Since posterior probabilities sum up to 1,
a higher posterior probability for one class results in a lower
posterior probability for the other class in the binary classifica-
tions. Uncertainty is thus defined between 0.0 and 0.5. A value
close to zero represents high confidence, since the probabilities
for both classes (flood and non-flood) indicate a clear decision.
High conditional errors (i.e., close to 0.5) indicate uncertain
decisions, as the new observation is falling into the overlap
of the local flood/no-flood distributions and hence no class is
much more probable than the other one. In such a situation, the
Bayes decision is very uncertain and the classification is not
meaningful.

For all pixels of the incoming Sentinel-1 image, the condi-
tional errors p(error|c”) are forwarded to the ensemble algo-
rithm, which represent the pixelwise uncertainties associated
with the flood map of TUW’s algorithm. For easier interpretation
and lower storage requirements, the uncertainties are scaled to
values between 0 and 100.

The TUW flood mapping algorithm features some internal
masking of conditions not well represented by the a priori prob-
ability parameters. This includes an internal uncertainty mask
based on the statistical Sentinel-1 backscatter model of TUW is
applied in this algorithm to exclude poorly based decisions (i.e.,
with low reliability), defined by an upper limit of 0.2 for the
conditional error, reflecting a 4:1 probability that the assigned
class is correct.

D. Fusion of Likelihoods

In the context of this study, likelihood values of different
origins are fused to a single quantity. Probability and fuzziness
can be considered equal in terms of the numerical expression
of the likelihood that is represented in the unit interval [0,
1]. However, they have to be differentiated in the manner in
which the two measures handle the semantic classes water and
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TABLE I
LIKELIHOOD QUANTIFICATIONS OF THE THREE INDIVIDUAL FLOOD
ALGORITHMS

Algorithm  Value ranges Type of

[low, threshold, high]  likelihood
DLR [0, 60, 100] Fuzzy value
LIST [0, 50, 100] Probability
TUW [100, 50, 0] Uncertainty

non-water [30]. Given the same probability and fuzzy values of
for example 0.8, the representation of likelihood is clarified as
follows.

A probability of 0.8 represents an 80% chance of pixelwise
water detection, where the value is determined based on pixel
frequencies. The likelihood about the chance of a water or a
non-water detection can be maximized as more observations
become available and the pixelwise water detection is built on a
broader data base.

A fuzzy value of 0.8 represents a pixel that is 80% water,
describing the degree of membership belonging to that class,
based on its properties. Such properties are defined through
the uncertainty analysis, e.g., the DLR algorithm attributes a
pixel with Sentinel-1 backscatter, slope, and size information
that declare its membership to the class water. The fuzzy value
expresses the degree to which it can be considered to be a (pure)
water pixel. The uncertainty about class ambiguity persists even
if more observations become available. Maximizing the likeli-
hood is, however, possible by introducing additional auxiliary
datasets that add to the pixel properties.

This study acknowledges the mathematical and ontological
complexities that characterize the formulation of the two afore-
mentioned types of likelihood generation. However, in order
to return actionable and interpretable information, the GFM
likelihood product simplifies the fusion of likelihood values
by computing the average value of the three algorithm like-
lihood outputs. While more advanced approaches have been
proposed to bring the two measures of likelihoods together, e.g.,
by [31], [30], and [32], this approach addresses the need for
practicality in crisis information management. This objective
is characterized by the need to make time-critical decisions
with informative and also more easily interpretable products to
support decision-making. Furthermore, the harmonized GFM
likelihood product summarizes the likelihood inputs from the
three water detection algorithms, thereby minimizing cognitive
overload for end-users.

III. ENSEMBLE LIKELIHOODS
A. Generation of Ensemble Likelihoods

Combining the likelihood information generated by each
flood algorithm requires value harmonization. Table I outlines
each of the three outputs with respective value ranges. The value
ranges indicate the lowest and highest classification confidences
as well as the threshold distinguishing flood from non-flood.
Since the TUW algorithm outputs uncertainties, a pixel value of
100 represents a maximum uncertainty value that is comparable
to an LIST probability or a DLR fuzzy value of 0.
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The DLR and LIST flood algorithms produce uncertainties
that are numerically similar to likelihoods, with low values
indicating low flood classification confidence and vice versa.
The uncertainty analysis of TUW produces an inverse value
range, where low values indicate high likelihood or high flood
classification confidence and vice versa.

By definition, a threshold value of 50 separates the flood
and non-flood pixels in the ensemble likelihood layer. Fuzzy
values F generated from the DLR algorithm are adapted to this
scheme, based on (4). With that, fuzzy values in the flood regime
are stretched, whereas fuzzy values in the non-flood regime are
compressed by an absolute value range of 10. The application of
several exclusion layers to non-flood regions, however, removes
certain locations from the non-flood regime which compensates
for the compression of fuzzy values

100 — 1.25- (100 — F'), F > 60
likelihoodpi g = { . ( h B2 )
5 F < 60.
The TUW uncertainties U are inverted, following (5).
100 — flood =1
likelihoodyyy — 4 100~ U floodruw (5)
U, ﬂOOdTUW =0.

Once likelihood values from all three algorithms are represented
in the same range, the ensemble likelihood is computed as the
mean of the individual likelihood layers, irrespective of nodata
values. The individual algorithm layers are not weighted, i.e.,
each flood and likelihood layer are treated equally both in the
ensemble flood and likelihood computation.

The ensemble algorithm computes the result on pixel level
and requires two sets of three input layers each for flood and
likelihood computations, respectively. If two flood algorithms
fail to output data, the required flood and likelihood layers are
generated automatically with the same geometry as the input
Sentinel-1 scene and filled with zero values stating no flood
for the entire scene, accompanied with zero values stating low
likelihoods.

A valid flood or a non-flood pixel is always connected to a
valid likelihood pixel. If a flood pixel holds a nodata value, the
corresponding likelihood pixel also stores a nodata value.

This behavior has implications for the statistical robustness
of the ensemble results. For instance, a flood pixel that is
based on three valid individual classifications is considered
to be statistically more robust compared to a flood pixel that
is based on only two valid individual classifications (and one
nodata classification). The latter is a so-called split situation
that is resolved through a consensus approach, i.e., the ensemble
algorithm marks that pixel as not flooded.

Fig. 3 illustrates three different cases (C1, C2, C3) to demon-
strate the ensemble classification scheme and further elaborates
on the majority voting system. In the first case C1, three out of
three of the individual algorithms return a flood classification
which is a full consent. In case C2, two out of three of the
individual algorithms return a classification that disagrees with
the third algorithm. This is a major consent and the pixel is
classified as flood or non-flooded, respectively, depending on
the majority vote, e.g., [flood, flood, non-flood] or [non-flood,
non-flood, flood]. In case C3, one algorithm returns a nodata
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Fig. 3. Sample inputs generated by each of the three individual flood algo-

rithms with (a) available flood and likelihood data per algorithm on pixel level
and (b) possible changes in the final classification. The cases C1 and C2 handle
full and majority agreement, respectively. The case C3 demonstrates a split
situation that is resolved through a conservative agreement with a non-flood
result.

value and the remaining algorithms disagree on the classifica-
tion, e.g., [nodata, flood, non-flood]. The ensemble algorithm
resolves the split situation through a conservative approach and
marks the pixel as non-flooded.

The steps described in this section define initial flood map-
ping likelihoods that are to be corrected with auxiliary data
masking out error-prone regions and excluding areas of no inter-
est, e.g., reference water that is not flooded per definition. If these
pixels are to be excluded and were classified as non-flooded,
the initial likelihood value remains unchanged. If pixels to be
excluded were classified as flooded, the respective likelihood
value is changed to the value 49, i.e., the most unconfident
likelihood value for the non-flood class.

B. Evaluation of Likelihoods

Evidence of the successful generation of algorithm and en-
semble likelihoods is given with the creation of quantile—
quantile plots, as described by [33]. The plot compares the
computed individual algorithm and ensemble likelihood val-
ues with empirical probabilities that are computed from val-
idation data. Quality control of Sentinel-1-based flood extent
is performed with Sentinel-2 Level-1 C flood extent that was
mapped manually. Hostache et al. [19] presented a general set
of quantile—quantile plots during the development stage of the
GFM project.

All incoming algorithm and ensemble likelihood values are
transformed to prediction probabilities p(P|L) (6) that represent
the mean likelihood P for the respective and iterative likelihood
range L. The total likelihood range is defined as the interval [0,
1] with ten iteration steps

p(P|L) = p(P|L). (6)

The binary Sentinel-2 water extent is transformed to empirical
probabilities e(TW| L) (7) that represent the mean flood coverage
F for the respective and iterative likelihood range L. The total
likelihood range is defined as the interval [0, 1] with ten iteration
steps

e(F|L) = p(F|L). )



KRULLIKOWSKT et al.: ESTIMATING ENSEMBLE LIKELIHOODS FOR THE SENTINEL-1 BASED GFM PRODUCT OF THE CEMS

F0.1

B
o
c
]
8
< 107 F1
X
a
o
=
=
T
[}
12

£0.01

:

(e) (]
[ Herbaceous veg. [ Agriculture
Il Built-up Il Permanent water

7] Shrubs
7] Sparse veg.

Fig. 4. Location of the study areas in Myanmar and Somalia. The Sentinel-1
scene over (a) Myanmar was acquired on 201907-16 11:39:44. The Sentinel-1
scene over Somalia (c) was acquired on 2019-03-16 02:46:06. Both study areas
are accompanied with an overview of predominant land cover maps (b) and
(d). An exclusion mask is applied and shows areas where flood computation is
performed. This information is in line with the pixelwise distribution of land
cover classes for (e) Somalia and (f) Myanmar, valid for non-excluded regions.

IV. DATASETS

This section gives an overview on the used datasets and
how they were processed within this study. Two use cases
are presented that showcase a flood event in Myanmar and a
non-flood situation in the semi-arid climate zone of Somalia (see
Fig. 4). The preprocessing of the Sentinel-1 IW GRDH datasets
is described by the overview given in [34].

The individual flood algorithms exploit Sentinel-1 GRD IW
data which are shown in Fig. 4(a) and (c). Sentinel-1 data over
Myanmar was acquired on 2019-07-16 11:39:44. Sentinel-1 data
over Somalia was acquired on 2019-03-16 02:46:06. The fuzzy
logic step of the DLR flood algorithm uses slope information
derived from Copernicus DEM data [35]. All input datasets
were resampled to a common pixel spacing of 20 X 20 m in
the Equi7Grid projection [36].

Land cover information for this study is based on the global
Copernicus Land Cover product from 2019 [37] with an original
pixel spacing of 100 x 100 m that has been resampled to 20
x 20 m. As for this study, it was decided to focus on selected
predominant land cover types that are either of particular socioe-
conomic interest or likely to be affected from flooding. Fig. 4(b)
and (d) depict the spatial distribution of predominant land cover
types for the study areas, followed by the class frequencies in
Fig. 4(e) and (f). An exclusion mask is applied, leaving land
cover types that are part of this analysis.

For the Myanmar use case, the land cover type agriculture
dominates the study area with a pixel coverage of approx. 90%
followed by the classes of built-up and permanent water, sharing
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Fig. 5. Quantile—quantile plot comparing predicted probabilities (ensemble

together with algorithm likelihood values) with empirical probabilities from val-
idation data. Each marker plots into the respective bin range, e.g., [0.0, 0.1]. The
marker size denotes the relative number of samples per algorithm. Low predicted
probabilities denote low algorithm or ensemble likelihood values, which maps
to higher flood classification confidence. Low empirical probabilities denote
greater flood extent for the same pixel locations.

less than 5% coverage each. Land cover types depicting forests
and similar classes are not considered, although shown in green
colors in the map, as they represent a state of dense vegetation
that is mostly excluded from the flood computation.

For the Somalia use case, the land cover type shrubs dom-
inates the study area with a pixel coverage of approx. 90%
followed by the class agriculture with a pixel coverage of approx.
10%.

A crucial part of the presented data relies on a consistent
and robust reference water dataset that was computed prior to
the release of the GFM products. The GFM reference water
dataset exploits a two-years’ time series of Sentinel-1 median
backscatter images that were aggregated for each month. Thus,
the reference water reflects permanent water which is stable over
the reference period of two years and seasonal water bodies
that are periodically flooded over the duration of the reference
period.

An exclusion layer defines pixels that are not included into
the final ensemble output, as examined by [38]. As already
mentioned in Section I1, the exclusion layer contains information
about radar shadows, dense vegetation, and permanent low
backscatter, i.e., regions where the flood inundation is hampered,
as well as topographic regions that are not prone to flooding.

In order to evaluate the ensemble likelihood values validation
data covering the Myanmar study area is introduced. The data
consists of a binary flood extent map derived from Sentinel-2
Level-1 data, which was acquired on 2019-07-15 with a one-day
delay to the acquisition of Sentinel-1 data over Myanmar.

V. RESULTS

In relation to the validation data, this study further examines
a quantile—quantile plot supporting the evaluation of likeli-
hood values (see Fig. 5). The quantile—quantile plot shows the
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water and exclusion mask (b) and (f), likelihoods prior to ensemble (c) and (g), and spatial distribution of flood classifications prior to ensemble (d) and (h).

agreement of the computed individual algorithm and ensemble
likelihood values with empirical probabilities. The plot shows a
clustering of low and high probabilities. Low predicted probabil-
ities tend to map to low empirical probabilities and vice versa.
The majority of samples show higher predicted probabilities
compared to empirical samples. Samples where the empirical
probability exceeds the predicted probability occur with a low
pixel count within the likelihood interval [0.3, 0.9]. It should
also be noted that the empirical probability reaches maximum
values of only 0.9.

To address the objectives defined in Section I-B, scenarios
are examined to identify specific likelihood regimes reflecting
the number of algorithms that were used to compute the pixel-
wise likelihood.

The Myanmar use case represents a known flood event on
July 16, 2019, see Fig. 6(a)—(d).

The likelihoods in Fig. 6(c) represent the initial mean likeli-
hood values that were computed as the average of all available
pixelwise flood algorithm likelihood values, prior to the appli-
cation of the ensemble algorithm.

The classification Fig. 6(d) illustrates the initial flood clas-
sification prior to the application of the ensemble algorithm.
Full consent marks pixels where three out of three algorithms
agree on a flood and non-flood classification, respectively. Major
flood and major non-flood indicate pixels where two out of three
algorithms agree on the classification of flood or non-flood,
respectively, i.e., [flood, flood, non-flood], and vice versa with

[non-flood, non-flood, flood]. It should be noted that [flood,
flood, nodata] also results in a major flood decision; the same
applies to major non-flood decisions with [non-flood, non-flood,
nodata]. Split situations mark pixels where one algorithm cannot
classify a pixel, and thus, outputs nodata, while the remaining
algorithms disagree on the classification, i.e., [flood, non-flood,
nodata].

Very low initial mean likelihood values are observed over
permanent water features, see Fig. 6(b). These values primarily
correspond to areas that are excluded in the post-processing
step and with initial full non-flood classifications, see Fig. 6(d).
Much higher likelihood values are observed over image features
that correspond to full or major flood classifications. Pixels
with medium likelihood values around 50 correspond to split
situations located along and within seasonal water bodies. The
consensus approach resolves these split situations to non-flood
decisions.

Fig. 7 illustrates split situations in green colors with like-
lihoods <50 that are remapped to non-flood decisions. Thus,
100% of the split pixels are reclassified to non-flood, thereby
increasing the share of non-flood pixels for that particular like-
lihood value. Fig. 7(a) also shows major flood pixels in the
likelihood range [50, 80] and full flood pixels with likelihoods
>80. A small number of major flood pixels with likelihoods
>50 are excluded from the final ensemble results and therefore
marked as superior non-flood with reassigned likelihood values
of 49. As can be seen in the top-right bar plot of Fig. 7(b), the
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Fig. 7. Histograms of likelihood distributions for the (a) and (b) Myanmar
and (c) and (d) Somalia use case. Each box contains a histogram pair (a) and
(c) prior to the ensemble and (b) and (d) after the ensemble algorithm was applied.
Pixels that were initially marked as flooded and have been overwritten by the
exclusion layer to non-flooded are marked as superior non-flood. Depending on
the distribution of the likelihood in the initial flood classification, ensemble flood
likelihoods <50 can occur, e.g., a classification with [flood, flood, non-flood]
has the likelihoods [50, 50, 40] with a mean likelihood of 47. Each colored group
sums up to 100 %, i.e., the bar widths are not comparable but give an indication
about the likelihood distribution within that group. The share of each group on
the total pixel count is given with a bar plot for each of the histograms.

count of initial flood pixels that are remapped to non-flood pixels
is very low, as indicated through the small size of the green bar.
Also, the full non-flood class clearly dominates the classification
types, followed by major non-flood decisions. In the Myanmar
study area, about 10% of all pixels are classified as flooded.
The Somalia use case represents a regular monitoring ob-
servation (i.e., non-flood event) on March 16, 2019, where
overdetections are likely to be observed as the environmental
setting mostly covers dry soil, see Fig. 6(e)—(h). In effect, the use
case contains a very limited number of water pixels in general,
which is also reflected in the reference water mask, see Fig. 6(f).
Very low initial mean likelihoods, see Fig. 6(g), highlight the
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Fig. 8. Boxplots of ensemble likelihood distributions with respect to land
cover/ uses in the (a) Myanmar and (b) Somalia use case. The sample count for
each box is indicated through the box height. Boxplots of extreme low variance
are located along likelihoods of 50 and mark superior non-flood pixels. The
legend in plot (b) applies for both plots.

fact that the majority of the pixels are initially classified as
non-flooded, see Fig. 6(h). A substantial number of split sit-
uations are observed along meandering river channels. These
split situations represent potential overdetections that appear as
fragmented clusters and do not follow morphological shapes,
e.g., depression boundaries, and generally correspond to dark
Sentinel-1 backscatter features, i.e., potential water look-alikes.

Fig. 7(c) and (d) show medium-to-low likelihood values for
split pixels that are remapped to major non-flood pixels and
therefore increase the amount of major non-flood pixels, as
depicted by the top-right bar plot of Fig. 7(d). It is also clear that
very few flood pixels are removed at the end of the ensemble
algorithm with reassigned likelihood values. Any initial flood
pixel with a likelihood >50 is reassigned with a likelihood value
of 49 which is depicted in Fig. 7(d). However, the amount of
these remapped pixels is still low and the majority of pixels
belongs to non-flood classes.

The next set of results supports the identification of land cover
classes that are associated with different likelihood values (see
Fig. 8). This analysis is performed with both use cases and aims
to focus on land covers with relatively high economic and social
impacts to end-users, e.g., agriculture and built-up.

Fig. 7 already depicts low likelihood values for non-flood
classifications for both use cases, which also dominate the
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amount of considered pixels for these classes. In congruence
to that, Fig. 8 shows low variance in likelihood values for full
non-flood decisions across all land cover types and for both use
cases. The situation differs for major non-flood decisions where
the Myanmar use case shows greater likelihood variance across
all land cover classes [Fig. 8(a)], in contrast to the Somalia use
case [Fig. 8(b)].

As stated in Section IV, the land cover type agriculture
dominates the valid pixels in the Myanmar study area and
attributes to the majority of full non-flood classifications that
are depicted with likelihoods of 20 and less [Fig. 7(b)]. This
is also shown in Fig. 8(a), where full non-flood classifica-
tions over the land cover type agriculture show very low
variance.

Major non-flood classifications show greater likelihood vari-
ance that originates from split situations, which are remapped
to major non-flood in the ensemble algorithm.

For the Myanmar use case, the less dominant flood pixels
show low variance for full flood and greater variance for major
flood decisions across all land cover types. Superior non-flood
decisions are depicted with extremely low variance across all
land cover types.

As stated in Section IV, the land cover type shrubs dominates
the Somalia study area and attributes to the majority of full non-
flood classifications that are depicted with likelihoods of approx.
20, and less [Fig. 7(d)]. This is also shown in Fig. 8(b), where full
non-flood classifications over the land cover type shrubs show
very low variance.

Major non-flood classifications of greater variance are de-
picted for the land cover types agriculture, of which approx. 10
% of pixels build the study area, and permanent water, that is
almost not present in the region. However, both major non-flood
clusters are rather small.

As shown in Figs. 7(d) and 8(b), superior non-flood classifica-
tions occur and remap any potential flood classification prior to
the application of the ensemble algorithm if they were masked
out by the exclusion layer. Although only given with a very
low number of pixels, their majority plots into the dominating
land cover class shrubs and shows a likelihood cluster of low
variances.

VI. DISCUSSION

The results provide a basis to obtain insights about the
correlation of results prior to and after the application of
the ensemble algorithm. In particular, the evaluations aim to
link majority-based classifications and their statistical robust-
ness to an explanatory variable, namely, dominant land cover
types.

On the stability of the ensemble likelihood methodology,
a discussion of such lacks a profound definition of the term
stable and could express spatial, timely, or computational
stability. Benefits and limitations of ensemble likelihood values
for various land covers are presented in the previous and will be
discussed in this section. As for timely stability, the ensemble
results follow a seasonal meteorological pattern that becomes
most visible for the reference water masks, which already in-
cludes a seasonal component.
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A. Quantile—Quantile Plot

The quantile—quantile plot reflects the statistical reliability of
the probabilistic prediction as the majority of predicted data is
in close proximity to the one-to-one line.

The part of the data showing higher predicted probability com-
pared to the empirical probability marks a flood overdetection
with reference to the validation data. The same applies to low
predicted probabilities that mark a non-flood overdetection with
reference to the validation data.

The part of the data showing higher empirical probability
with medium predicted probability marks flood underdetections
with reference to the validation data. These regions represent
the minority of the data and mostly locate along the edges of
detected flood patches and along river channels. It is likely that
the exclusion layer does not cover these regions although they
are likely to introduce misclassifications.

It should be noted that the validation data is not real ground
truth data but relies on the flood extent manually derived from
Sentinel-2 data. As it has been described in Section I, fusing
Sentinel-1 with Sentinel-2 data not only provides a profound data
basis but also contains deviating results due to the observation
procedure. Furthermore, the validation data shows a one-day
delay to the acquisition of Sentinel-1 data, reflecting a probable
change of the flood situation. Therefore, flood patches missing
in the validation data can be considered as possible sources of
flood overdetection in the prediction data. Clouds and cloud
shadows are a known source of optical flood underdetections
which accounts for an overdetection with SAR data when both
data sources are compared.

Showcasing strengths and limitations of algorithm and en-
semble likelihoods is hardly possible when assessing only a
single quantile—quantile plot. However, presenting further data
in higher quantities exceeds the objectives of this publication.
Yet, examining empirical with predicted probabilities is a proof
of concept that the underlying likelihood values are comparable
with probability values from another data source.

B. Map Subfigures

Examining the series of subfigures for both use cases supports
an initial assessment of the scenarios under which majority
flood/non-flood classifications are identified, prior to the appli-
cation of the ensemble algorithm. These results contain a signif-
icant number of split pixels where one out of three algorithms
return a nodata value and two out of three disagree on the flood
classification. This behavior does not indicate a failure of the
system and is not to be mistaken as an inaccurate result. Nodata
classifications occur if an algorithm is unable to classify a pixel
with a robust likelihood, i.e., if the result shows a significantly
low classification confidence. Such an output is observed over
challenging SAR image features that could not be excluded from
the ensemble result. The ensemble algorithm translates these
unconfident results to non-flood with a likelihood value of 49,
i.e., the most unconfident likelihood of the non-flood class.

In the Myanmar flood event use case, the relatively high
number of split situations coincide with the location of
seasonal reference water bodies and with the presence of dense
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vegetation. Flood waters, including those classified based
on majority decisions, also correspond with seasonal water
bodies. Flood classifications over these areas represent a degree
of disagreement among the contributing flood algorithms.
The resulting mean likelihoods may be used to caution users
to consider verifying these flood hotspots with additional
data prior to making decisions, e.g., on resource allocation.
Permanent water features, on the other hand, are classified as
non-flooded despite one out of three algorithms classifying
these features as flooded. It should be noted that the application
of the reference water mask in the ensemble post-processing
step reassigns the likelihood values of the permanent water
features to 0 to indicate high confidence of being non-flooded.
In these instances, the ensemble likelihood makes the non-flood
classification explicit, regardless of the number of individually
contributing flood algorithms over these pixels.

In the Somalia use case, the relatively high number of split
situations, in addition to major non-flood classifications, are
located along former meandering river channels that seemed
to have dried out and share the same SAR signal responses as
bare soils. Herbaceous vegetation, shrubs, and agriculture on
dry soil are well-known challenges for flood detection based on
Sentinel-1 backscatter, where the low radar backscatter tends
to often result in overdetections. The consensus approach of
the ensemble algorithm, although being a conservative measure,
reduces these overdetections significantly and demonstrates the
advantage of the ensemble algorithm over the application of a
single measure alone.

C. Histograms

For the Myanmar use case, flood classifications are associated
with ensemble likelihoods between 50 and 100; major floods de-
tected with a certain degree of disagreement are associated with a
wider range of lower ensemble likelihoods, while full floods are
associated with a narrower range of higher confidence ensemble
likelihoods between 80 and 100. The expression of agreement, as
a form of confidence in flood detections, is useful information
that can be consulted to support any decision-making by end
users during the onset of reported flood events. It should be
noted that a major flood decision originates from one out of
three algorithms classifying nodata or non-flood. Regardless of
the scenario, such a likelihood value is rather low and clearly
indicates lower confidence for the ensemble flood classification
compared to a full flood agreement, which builds on a broader
data basis.

For the Somalia use case, no flood was classified, which is
also a result of resolving split situations with the consensus
approach. A different approach would have been to resolve split
situations by favoring the flood or non-flood classification with
the highest confidence in the respective class. Although less
conservative, it would have been more likely to miss critical
overdetections.

D. Boxplots

The pair of boxplots compare ensemble likelihood distri-
butions with respect to land cover/uses in the Myanmar and
Somalia use cases.
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In the Myanmar use case, ensemble likelihoods of flood
detection increase from the lower mid ranges corresponding to
the initial mean likelihoods for all dominant land cover classes
to notably higher ranges and demonstrate a medium spread of
classification confidence.

In the Somalia use case, no floods could be observed but in
comparison to the Myanmar use case, the likelihood variances
are rather low and demonstrate higher confidence of the non-
flood classifications.

At this stage, it should be noted that the exclusion layer also
masks out regions that are likely to hamper the flood classi-
fication. It cannot be ruled out that for the Somalia use case,
as a representative for challenging SAR-based flood detection
conditions, a greater range of likelihood variance would be
possible if another exclusion mask would have been applied
to the data. However, this set demonstrates the advantage of
including auxiliary data like an exclusion mask to focus on
flood-prone regions.

In comparison with the utilized land cover data, the permanent
water class reveals regions of disagreement with the GFM flood
product. Although the GFM flood and likelihood products are
not relevant for permanent water features, an intersection of
these datasets shows different results due to the significantly
enhanced spatial resolution of 20 m in the GFM dataset com-
pared to the spatial resolution of 100 m in the land cover
dataset.

Furthermore, the land cover class built-up is to be excluded
with the exclusion layer. However, the same diversity in spatial
resolution applies to this case as well as the definition of built-up
areas that are not meant to be included in the computation. Apart
from a small number of towns, both study areas also contain light
settlements that are not covered by the exclusion mask. Having
the likelihood values for these built-ups is useful information for
the end-users as this land cover type is of high socioeconomic
interest.

VII. CONCLUSION

Within this article, we describe a methodology to combine
flood ensemble likelihoods of the Sentinel-1 GFM product.
We further highlight the importance of interpretable and robust
likelihood values to guide end-users and decision makers in their
processes.

The computation of likelihoods informs on the robustness
of flood classifications. While various methods have been pro-
posed in literature to combine different types of uncertainty
information origins, e.g., probabilities and fuzzy values, their
computation and fusion is rather complex and arguably hampers
their interpretability and a straight forward crisis response. In
contrast, the method presented here is easy to interpret and
its application is straight forward, as it is solely based on the
computation of the arithmetic mean of the individual flood
algorithm likelihoods. Considering the value range, the clas-
sification of a flood pixel with an associated likelihood close
to 100 is considered to be more confident than a flood pixel
with a likelihood of close to 50, and is based on a wider range of
input data. Furthermore, flood classifications with low likelihood
values, i.e., values in the range [50, 60], originate from an
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ensemble configuration with one algorithm classifying a pixel
as non-flooded or nodata. Consequently, the ensemble likeli-
hood product alerts end-users to the presence of non-consent
flood classifications, which should be treated with care in
decision-making.

The first results show how ensemble likelihoods function as
a heuristic to identify and provide a first indication of the per-
formance, as well as the agreement among the three algorithms
contributing to the final flood classification. These aggregated
likelihood values capture cumulative uncertainties from data,
model architecture, algorithmic level and interpretation. Further
reduction of uncertainties requires more dedicated investigative
methods. Once generated, this kind of uncertainty information
can be used by both of the aforementioned communities. In
particular, researchers or algorithm developers are offered guid-
ance to investigate how to minimize uncertainties with respect to
certain explanatory variables, e.g., land cover types. End users
may consult likelihood information that supports cautioning
against the direct use of flood classification product in areas with
low likelihoods of flood classification, or where classifications
are based on majority, rather than full detections. For resource
allocation, it may be sufficient to identify areas of certain ex-
tents as potential hotspots, even if likelihoods associated with
individual pixels in the vicinity of the areas of interest are
lower.

Based on the preliminary results, the benefits and limitations
of the ensemble likelihood approach are highlighted and provide
a starting point for further developments and applications in the
two research and end-user communities. Further assessments
may be conducted to include additional variables, in addition
to extending the number and variety of use cases. A broader
analysis with higher quantities of input data, a wide coverage of
land uses and a long-term assessment would answer the thesis
that the individual flood algorithms bring specific benefits and
limitations that are directly connected to the underlying flood
detection mechanism. Such a long-term assessment was not
possible until the GFM service became recently operational.
At locations where a single algorithm is sensitive to misclas-
sifications, applying an ensemble approach balances out such
limitations.
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