
 

Framework Service Contract No. 939866 

THE EXPERT FLOOD MONITORING ALLIANCE 

Provision of an Automated, Global, Satellite-based Flood Monitoring 
Product for the Copernicus Emergency Management Service 

 

 

 
 
 
 
 
 
 
 
 
 

Product Definition Document (PDD) 
 
Document ID: GFM D6 Product Definition Document 
 
Issue: 1 
 
Version: 1.4 
 
 
 
 
 

Issue Date: 20.04.2022 
 
Issue By: Patrick Matgen (LIST) 



 

Framework Service Contract No. 939866 

THE EXPERT FLOOD MONITORING ALLIANCE 

Provision of an Automated, Global, Satellite-based Flood Monitoring 
Product for the Copernicus Emergency Management Service 

 

 

 
 
 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 3 of 75 

 

 
 
  

Dissemination Level 

PU Public x 
PP Restricted to other programme participants (including the Commission Services)  
RE Restricted to a group specified by the consortium (including the Commission Services)  
CO Confidential, only for members of the consortium (including the Commission Services)  



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 4 of 75 

 

 

Document Release Sheet 
 

 

Book captain: Patrick Matgen 

 

Date 23/09/2021 

Approval: Dragana Milinkovic 
 

Signature Date 

Endorsement: CEMS Manager Dr Peter Salamon Signature Date 

Distribution: Public (PU) 

 
 
  



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 5 of 75 

 

 

Contributing Authors: 
 
EODC GmbH 
Christoph Reimer (CR), Dragana Milinkovic (DM) 
 

GeoVille 
Laurin Müller (LMü), Michaela Seewald (MS) 
 

TU Vienna 
Bernhard Bauer-Marschallinger (BBM), Florian Roth (FRo), Felix Reuss (FRe) 
 

CIMA 
Luca Molini (LM), Elisabetta Fiori (EF) 
 

LIST 
Patrick Matgen (PM), Renaud Hostache (RH), Marco Chini (MC), Ramona Pelich (RP), Yu Li (YL) 
 

DLR 
Candace Chow (CC), Marc Wieland (MW), Christian Krullikowski (CK), Sandro Martinis (SM) 
 

Change Log: 
 

Issue Version Date Description of Change Author(s) 

0.00 25.11.2020 Created template RK 

0.01 21.04.2021 
Implemented structure of document and inserted 
first algorithm description (GFMS Product - Observed 
Flood event) 

PM 

0.02 15.07.2021 Inserted product and algorithm descriptions all 

0.03 01.08.2021 Started editing of document RP, PM 

0.04 01.09.2021 Reviewed the document, identified missing parts  RP, PM 

1.0 23.09.2021 Integrated missing parts  all 

1.1 23.09.2021 Document formatting  PM, DM 

1.2 26.10.2021 JRC document revision  JRC 

1.3 04.11.2021 Inserted references  RP, PM 

1.4 20.04.2022 
Update of algorithm descriptions in section 4.1 
(“Output layer S-1 observed flood extent”) 

RP, CK, FRo 

 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 6 of 75 

 

For any clarifications please contact Dragana Milinkovic, GFM Service Manager 
(GFM_Service_Manager@eodc.eu). 

  



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 7 of 75 

 

Table of Contents 
 

1 Introduction ............................................................................................................................... 10 

2 Overview of data products ........................................................................................................ 10 

3 Satellite data pre-processing and ancillary data preparation ................................................... 11 

3.1 Sentinel-1 data .................................................................................................................... 11 

3.1.1 Sentinel-1 pre-processing ............................................................................................ 11 

3.1.2 Sentinel-1 temporal parameters .................................................................................. 14 

3.1.3 Sentinel-1 harmonic parameters ................................................................................. 14 

3.1.4 Sentinel-1 projected local incidence angle data .......................................................... 16 

3.2 Ancillary data preparation ................................................................................................... 16 

3.2.1 Satellite orbit state vectors .......................................................................................... 17 

3.2.2 Copernicus DEM ........................................................................................................... 17 

3.2.3 Sentinel-1 Global Backscatter Model ........................................................................... 18 

3.2.4 HAND drainage information ........................................................................................ 19 

3.2.5 Land cover data ............................................................................................................ 19 

4 Generation of the GFM product output layers .......................................................................... 19 

4.1 Output layer “S-1 observed flood extent” .......................................................................... 20 

4.1.1 Flood mapping algorithm 1 (LIST) ................................................................................ 20 

4.1.2 Flood mapping algorithm 2 (DLR) ................................................................................ 26 

4.1.3 Flood mapping algorithm 3 (TUW) .............................................................................. 31 

4.1.4 Ensemble flood mapping algorithm ............................................................................. 39 

4.2 Output layer “S-1 observed water extent” ......................................................................... 46 

4.3 Output layer “S-1 reference water mask” ........................................................................... 46 

4.3.1 Algorithm for generating the S-1 reference water mask ............................................. 48 

4.4 Output layer “Exclusion mask” ............................................................................................ 49 

4.4.1 Algorithm for generating the Exclusion Mask ............................................................. 50 

4.4.1.1 Masking of no-sensitivity areas ................................................................................ 50 

4.4.1.2 Masking of non-water low backscatter areas .......................................................... 52 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 8 of 75 

 

4.4.1.3 Masking of topographic distortions ......................................................................... 53 

4.4.1.4 Masking of Sentinel-1 radar shadows ...................................................................... 54 

4.5 Output layer “Uncertainty values” ...................................................................................... 55 

4.5.1 Estimation of uncertainty for flood mapping algorithm 1 (LIST) ................................. 55 

4.5.2 Estimation of uncertainty for flood mapping algorithm 2 (DLR) ................................. 56 

4.5.3 Estimation of uncertainty for flood mapping algorithm 3 (TUW) ............................... 59 

4.6 Output layer “Advisory flags” .............................................................................................. 60 

4.6.1 Algorithm for generating the Advisory flags ................................................................ 61 

4.6.1.1 Low Regional Backscatter Flag ................................................................................. 62 

4.6.1.2 Rough Water Surface Flag ........................................................................................ 63 

4.7 Output layer “S-1 metadata” .............................................................................................. 65 

4.8 Output layer “S-1 footprint”................................................................................................ 66 

4.9 Output layer “S-1 schedule” ................................................................................................ 66 

4.10 Output layer “Affected population” ................................................................................ 67 

4.11 Output layer “Affected land cover” ................................................................................. 67 

5 Product access and dissemination system for the GFM product .............................................. 67 

6 Quality control of the GFM product .......................................................................................... 68 

7 Scientific references ................................................................................................................... 68 

8 Annexes: ..................................................................................................................................... 71 

 
 

  



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 9 of 75 

 

Acronym List: 
 
ARD Analysis-Ready-Data 

ASCAT Advanced Scatterometer 

CSCDA Copernicus Space Component Data Access 

dB Decibel 

DEM Digital Elevation Model 
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EC European Commission 

EO Earth observation 

ESA European Space Agency 

GDAL Geospatial Data Abstraction Library 

GFC Global Forest Change 

GFM Global Flood Monitoring 

GHSL Global Human Settlement Layer 

GPT Graph Processing Tool 

GRDH Ground Range Detected at High resolution 

HAND Height Above Nearest Drainage index 

HAND-EM HAND-based Exclusion Map 

HRL High-Resolution Layer 

IPF Instrument Processing Facility 

IW Interferometric Wide-swath 

JRC Joint Research Centre of the European Commission 

NRT Near real-time 

OS Operating system 

OSV Orbit State Vector 

PDF Probability Density Function 

PLIA Projected Local Incidence Angle 

POEORB Precise Orbit Ephemerides files 

RESORB Restituted Orbit Ephemerides files 

S1-GBM Sentinel-1 Global Backscatter Model 

SAR Synthetic Aperture Radar 

SNAP Sentinel Application Platform (ESA’s common software architecture for EO processing and analysis, 
supporting the Sentinel and other sensors). 

SRTM Shuttle Radar Topography Mission 

SSE Sum of Squared Estimate of Errors 

WBM Water Body Mask (one of the auxiliary information masks generated during the COPERNICUS DEM 
production process). 

WSF2015 World Settlement Footprint 2015 

Zstd Zstandard (a lossless data compression algorithm). 
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1 Introduction 
 
This Product Definition Document (PDD) provides detailed technical specifications for all of the 
product output layers of the new Global Food Monitoring (GFM) product of the Copernicus 
Emergency Management Service (CEMS). The PDD provides the reference information required to 
understand all elements of the various data processing chains, and explains the contents of the GFM 
product output layers, the main assumptions underlying their generation, and the limitations of the 
data. 
 
Specifically, the PDD describes in detail the GFM products in terms of the physical and mathematical 
basis of the algorithms and systems for each step in the product generation. The remainder of this 
document is structured as follows: 
 

▪ Section Error! Reference source not found. gives an overview of the eleven GFM product 
output layers and presents the overall product generation workflow. 

▪ Section 3 provides a detailed description of the pre-processing steps that are applied to the 
Sentinel-1 satellite data, as well as the preparation of all ancillary data. 

▪ Section 4 presents the input and output data, and describes in detail the algorithms used for 
generating the eleven GFM product output layers. 

▪ Section 5 gives a general description of the GFM product access and dissemination system. 
▪ Finally, Section 6 describes the procedure for the quality assurance of the GFM product.  

 

2 Overview of data products 
 
The eleven output layers of the new Global Flood Monitoring (GFM) product of the Copernicus 
Emergency Management Service (CEMS) are summarized in Table 1. 
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Table 1: The eleven output layers of the new Global Flood Monitoring (GFM) product of the 
Copernicus Emergency Management Service, generated in near real-time from Synthetic Aperture 
Radar imagery from ESA’s Sentinel-1 (S-1) satellites. 
# OUTPUT LAYER DESCRIPTION DATA FORMAT 

1 S-1 observed 
flood extent 

Flooded areas mapped as the difference between S-1 observed water extent 
and the reference water mask. 

Raster (Geotiff); 
vector (Shapefile). 

2 S-1 observed 
water extent 

Open and calm water mapped using Sentinel-1 SAR backscatter intensity. Raster (Geotiff); 
vector (Shapefile). 

3 S-1 reference 
water mask 

Normal (i.e. permanent, seasonal) water mapped using Sentinel-1 SAR 
backscatter intensity. 

Raster (Geotiff); 
vector (Shapefile). 

4 Exclusion mask Unclassified areas (e.g. urban areas; dense vegetation; flat and impervious 
areas; sandy surfaces; topographic effects). 

Raster (Geotiff). 

5 Uncertainty 
values 

Estimated uncertainty of flood mapping, for all areas outside exclusion mask. Raster (Geotiff). 

6 Advisory flags Flags indicating potential reduced quality of flood mapping, due to prevailing 
environmental conditions (e.g. wind, ice, snow, dry soil), or degraded input data 
quality due to signal interference from other SAR missions (e.g. Radarsat). 

Raster (Geotiff). 

7 S-1 metadata  Information on the acquisition parameters of the Sentinel-1 data used. KML. 

8 S-1 footprint  Image boundaries of the Sentinel-1 data used. KML. 

9 S-1 schedule  Next scheduled Sentinel-1 data acquisition. KML. 

10 Affected 
population 

Number of people in flooded areas, mapped by a spatial overlay of observed 
flood extent and gridded population (from the Commission’s GHSL project). 

Raster (Geotiff). 

11 Affected land 
cover 

Land cover types (e.g. artificial surfaces, agricultural areas) in flooded areas, 
mapped by a spatial overlay of observed flood extent and Copernicus Global 
Land Service data. 

Raster (Geotiff). 

 

3 Satellite data pre-processing and ancillary data preparation 

3.1 Sentinel-1 data 

 
The Sentinel-1 data build the core dataset of the GFM service. We not only use them as primary 
information source on the extent of flooded areas and permanent and seasonal water bodies, but 
also for the (offline-) generation of parameters describing globally the C-band Synthetic Aperture 
Radar (SAR) backscatter signature at the 20m-pixel-level, supporting the generation of the different 
product layers. 
 
3.1.1 Sentinel-1 pre-processing 
 
The GFM service ingests observations from the Sentinel-1A/B satellites that are acquired in 
Interferometric Wide-swath mode and Ground Range Detected at High resolution (Sentinel-1 IW 
GRDH). The GRDH products consist of focused SAR data that has been detected, multi-looked and 
projected to ground range using an Earth ellipsoid model, and phase information is lost. The 
resulting product has approximately square spatial resolution pixels and square pixel spacing with 
reduced speckle at the cost of worse spatial resolution. In case of the here used high-resolution 
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product, the raw backscatter amplitude is sampled with a 10x10 m pixel size. For the GFM flood 
service, we process Sentinel-1 data in VV-polarisation (and neglect the VH-polarisation channel) due 
to its higher sensitivity in differentiating water from non-water surfaces. 
 
The incoming Level-1 Sentinel-1 datasets must undergo the pre-processing routines before being 
forwarded to the algorithms for water and flood extent detection. The output of the pre-processing 
is Analysis-Ready-Data (ARD) that is formatted and gridded, and immediately forwarded to the GFM 
flood detection engine and added to the Sentinel-1 data cube. 
 
Based on single Sentinel-1 Level-1 GRDH scenes, the near real-time (NRT) Sentinel-1 pre-processing 
workflow (see Figure 1) is triggered. Before the actual SAR processing starts, the external, global 
30m Copernicus DEM (Copernicus DEM) mosaic (see Section 3.2.1) is cropped to the projected 
extents of the scene to minimize the input file size in the Sentinel Application Platform (SNAP). Then, 
the SNAP processing is conducted via Graph Processing Tool (GPT) commands1 subsequently called 
from a Python package developed by TU Vienna. This routine involves the following steps, where 
the step 2, 7, and 8 are done independently from SNAP: 
 
Table 2: Description of the steps in the Sentinel-1 pre-processing workflow, carried out using the 
SNAP toolbox via Graph Processing Tool (GPT) commands. 

# STEP DESCRIPTION 

1 Apply Orbit 
File: 

Applies precise orbit ephemerides (POEORB) if possible, otherwise, restituted orbit (RESORB) 
ephemerides are used, accessed from the Copernicus Hubs 

2 Border Noise 
Removal: 

Removes border noise pixels introduced by the conversion from the raw files to the Level-1 
files conducted by the Instrument Processing Facility (IPF). In March 2018, IPF released a new 
processor version (IPF 2.90), which does not produce such artefacts at the image borders 
anymore. For older data we still apply our own, bidirectional-sampling algorithm to get rid of 
border noise (Ali et al., 2018). 

3 Thermal Noise 
Removal: 

Low backscatter from shallow or flat surfaces (e.g. lakes, rivers or streets) is often affected by 
a certain amount of additive noise, also known as thermal noise. This noise is reduced by 
applying the thermal noise calibration vectors stored in the Level-1 metadata provided by 
ESA. 

4 Radiometric 
Calibration: 

Converts and calibrates digital numbers (actually stored measurement) to backscatter 
quantities, in our case to Sigma Nought or the radar backscatter denoted here asσ^0. 

5 Gap-Filling / 
Slice Assembly: 

Level-1 products are disseminated by ESA by slicing the full swath into several smaller files 
along the movement direction (the individual S-1 scenes). These single scenes are 
consecutively aligned and are without any buffer. Since some processing steps (border noise 
removal, post-processing) remove a few boundary pixels to enhance the image quality, this 
leads to a small linear gap between adjacent scenes. To prevent that, we assemble 
neighbouring scenes and add a small buffer to the to-be-processed scene. 

6 Terrain 
Correction: 

The Range-Doppler terrain correction performs the geocoding of the scene from orbit to 
ground geometry. For this step, the Copernicus DEM-cutout is used as an auxiliary layer to 
provide the necessary information about terrain coordinates. 

 

1 https://senbox.atlassian.net/wiki/spaces/SNAP/pages/70503475/Bulk+Processing+with+GPT 

https://senbox.atlassian.net/wiki/spaces/SNAP/pages/70503475/Bulk+Processing+with+GPT
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7 Encoding: The output of the SNAP pipeline is a geocoded scene in the (native) LatLon projection system 
containing σ^0 backscatter values in the linear domain. This image is then converted to 
decibel (dB), scaled by a factor of 10, converted to Int16 data type, and written to disk as a 
Zstandard (ZSTD) compressed GeoTIFF file.  
 
The logarithmic operator is applied in order to increase the dynamic of low intensity values 
and obtain more symmetrical distribution of classes of interest. This setup facilitates an 
efficient and storage-saving formation of the Sentinel-1 global datacube, providing a 
precision of 0.1dB that exceeds the radiometric accuracy of the C-band SAR sensor. 

8 Resampling: The last step resamples the data to the Equi7Grid system at 20m pixel sampling, using 
bilinear resampling from the Geospatial Data Abstraction Library (GDAL) libraries, and 
subsequently creates Equi7Grid-T3-tiles (squares covering 300x300km) to facilitate 
manageable file sizes in a stacked image structure. 

 

 
 
Figure 1: Illustration of the Sentinel-1 pre-processing workflow, with a Sentinel-1 Level-1 GRDH 
scene as input and georeferenced, calibrated backscatter (Sigma Nought) data as output. 
 
Following the processing pipeline depicted in  
 
Figure 1, we perform basic and fully automatic quality checks to ensure that the produced files and 
file contents fulfil a certain level of quality: 
 

▪ Open and read file contents. 
▪ Checking expected metadata attributes. 
▪ Checking if the file only contains no data values. 
▪ Validating the expected range of values. 
▪ Checking if the spatial reference information is properly set in the GeoTIFF header. 

 
An optional by-product of the SNAP geocoding workflow is the so-called projected local incidence 
angle (PLIA), which is the angle between the vector ground-satellite and the surface normal vector, 
projected into the range plane. PLIA is an essential information about the observation geometry of 
the satellite and varies across different orbits. Due to the Sentinel‑1’s stable orbit revisit over time, 
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we do not produce the PLIA files in the NRT service but only during archive reprocessing (hence it is 
depicted by grey text in the last section in  
 
Figure 1). 
 
3.1.2 Sentinel-1 temporal parameters 
 
Based on the Sentinel-1 data, several temporal parameters are computed for the period 1.1.2019-
31.12.2019 on a global scale. These serve as an input for the flood algorithms, exclusion layers and 
advisory flags. The parameters differ in their temporal aggregation. Parameter computed on 
monthly basis are in the following called GRMAG for grouped monthly aggregated, parameters 
aggregated over the total time period TAG. Moreover, parameters are either computed over all 
orbits together or per orbit. The temporal parameters are listed and described in Table 3. 
 
Table 3: Overview of Sentinel-1 temporal parameters, and availability per orbit and over all orbits. 

PARAMETER DESCRIPTION PER 
ORBIT 

OVER ALL 
ORBITS 

Number of 
observations 
(NOBS) 

Contains the number of observations per pixels. This parameter is available per 
orbit and for all orbits combined. 

x x 

Low backscatter 
frequency  
(LTM15-FREQ) 

Contains the frequency of observations below -15dB. This parameter is 
calculated per orbit and serves as an input for the low backscatter masking. 

x  

Mean  
(TAG-MEAN) 

The total aggregated mean backscatter. The parameter is calculated per orbit 
and as a weighted average over all orbits. The latter is used as an input for the 
DLR and LIST algorithms to extract the permanent water mask and will in a later 
version be replaced by the median over the entire time series. 

x x 

5th percentile 
(PERC-05) 

The 5th percentile is calculated per orbit and used as an input for the advisory 
flags. 

x  

Monthly 
grouped median  
(GRMAG-
MEDIAN) 

The GRMAG-MEDIAN is calculated for all month over the two years over all 
orbits. It is used as an input for the DLR and LIST algorithms to extract the 
seasonal water mask. 

 x 

 
3.1.3 Sentinel-1 harmonic parameters 
 
Radar signal interacts with the Earth’s surface in many different ways. It can be absorbed, scattered, 
and reflected according to the surface states and characteristics of sensor. The surface state 
(including soil moisture content, vegetation, roughness, etc.) varies over time leading to variation 
of backscatter time series. Based on different periods of variation, time series of backscatter can be 
decomposed into trend, seasonality and short-term random variation. 
 
GFM flood mapping algorithm 3 (see Section 4.1.3 for details) utilizes the harmonic model to 
simulate the backscatter seasonal variation and the estimation of normal, non-flooded conditions. 
Figure 2 shows a time series of VV backscatter and superimposed with the modeled harmonic time 
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series for an agricultural plot in Thessaly, Greece. An example for an estimated backscatter image 
for one day in summer and one day in winter over Greece is given in Figure 3. One can review the 
noticeable backscatter differences caused by varying seasonal vegetation state in this example. In 
this section, we describe the preparation performed to define the harmonic model on a global scale. 
 

 
 

Figure 2: Comparison of actual backscatter time-series and its harmonic model 
 

 
 

Figure 3: Example of the estimated backscatter of the harmonic model in summer and winter time 
over Greece 
 
We introduce a harmonic model (see Eq. 3-1 below) following the approach of Schlaffer et al (2015), 
where �̂�𝑡𝑑𝑎𝑦

0 the most probable radar backscatter at time 𝑡𝑑𝑎𝑦 i.e. day of the year, is computed from 

𝜎0̅̅ ̅ , the average backscatter for the time period, and 𝐶𝑖 and 𝑆𝑖, the harmonic coefficients of the 
cosine and sine components. The harmonic coefficients and the average backscatter are further 
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referred to as harmonic parameters. As suggested by Schlaffer et al (2015), k is set to 3, representing 
processes of a time-scale of four months, sufficient to reduce the impact of long-lasting flood events. 
 

�̂�𝑡𝑑𝑎𝑦

0 =  𝜎0̅̅ ̅ + ∑ (𝐶𝑖 cos
2𝜋𝑖𝑡𝑑𝑎𝑦

𝑛
+ 𝑆𝑖 sin

2𝜋𝑖𝑡𝑑𝑎𝑦

𝑛
)

𝑘

𝑖=1

 Eq. 3-1 

 
The harmonic parameters are derived from a least-squares estimation based on the backscatter 
values and corresponding observation times of input Sentinel-1 time series. This approach differs 
from Schlaffer et al (2015) as the backscatter is used directly instead of using 10-day composites. 
However, backscatter coefficients are highly dependent on the acquisition geometry. While a 
normalisation approach could be utilised when sufficient incidence angle samples per pixel are 
present as with ENVISAT ASAR, this procedure is not feasible with Sentinel-1. Hence the parameter 
estimation is performed for each unique acquisition geometry corresponding to a relative Sentinel-
1 orbit. Consequently, a unique harmonic parameter set per orbit per Equi7grid tile is required. 
Hence, to model the estimated backscatter �̂�𝑡,𝑟

0  for any given day 𝑡 and relative orbit 𝑟, seven (at 

k=3) harmonic parameters are computed. In order to get a measure of how many samples support 
the estimation and to exclude ill-fitted harmonic parameters, the number of valid observations 
(NOBS) for each pixel is written as an additional layer. In addition, the standard deviation of the 
harmonic model is calculated as the square root of the sum of squared errors (SSE), divided by the 
number of data points (𝑁𝑝𝑜𝑖𝑛𝑡𝑠) adjusted for the degrees of freedom of the model (see Eq. 3-2 

below). The SSE is derived from the pixel’s backscatter time-series 𝜎𝑡,𝑟
0  and its harmonic model �̂�𝑡,𝑟

0 . 

 

𝑠 =  √
𝑆𝑆𝐸(𝜎𝑡,𝑟

0 , �̂�𝑡,𝑟
0 ) 

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 − (2𝑘 + 1)
 Eq. 3-2 

 
3.1.4 Sentinel-1 projected local incidence angle data 
 
The projected local incidence angle (PLIA) is the angle between the surface normal and the looking 
direction of the satellite (local incidence angle - LIA) which is further projected into the range plane. 
It provides essential information about the observation geometry of the satellite and varies across 
different orbits. It can be computed for each individual image within the terrain correction step 
(section 3.1.1 Sentinel-1 preprocessing), however, within the GFM project we exploit the stable 
nature of the Sentinel-1 orbit and precompute the mean PLIA values globally for all available orbits. 
As an input for this computation, we use the individual PLIA images aggregated to mean values from 
the all available data observed in the year 2020. 
 
The mean PLIA values of the corresponding orbit are used together with the σ^0 image and the 
parameters of the harmonic model as an input of the TUW GFM flood mapping algorithm (see 
Section 4.1.3 for details). 
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3.2 Ancillary data preparation 
 
In order to enable the calculations for the flood mapping and its by-products, the GFM system relies 
on several auxiliary datasets. These datasets provide information on terrain, land cover, and 
Sentinel-1 orbit geometry and are necessary for the Sentinel-1 preprocessing, the flood- and water 
mapping itself, and the preparation of the Exclusion Mask and the Advisory Flags. 
 
Like the Sentinel-1 backscatter observations and the thereof derived statistical- and local signature 
parameters, these auxiliary datasets are stored in the Equi7Grid-based data cube at their native 
sampling. Consequently, also the auxiliary datasets are more efficiently stored and are accessible 
via the same interfaces as the Sentinel-1 datasets. 
 
3.2.1 Satellite orbit state vectors 
 
The Restituted Orbit (RESORB) files for the Sentinel-1 satellites contain the restituted Orbit State 
Vectors (OSVs) based on the orbit determination performed by ESA’s Precise Orbit Determination 
Service. The OSVs describe the geometry of the satellite’s centre of gravity in an Earth-fixed 
coordinate frame and are a necessary input to the geocoding of the incoming Sentinel-1 IW GRDH 
scenes when geometric precision at the 20m scale is demanded. The RESORB files are selected as 
input in the pre-processing component of the GFM system, as the (more precise) Precise Orbit 
Ephemerides (POEORB) files are unsuitable in NRT operations, with a delivery of 20 days after 
acquisition. 
 
The RESORB files are accessed from Copernicus POD Data Hub at a 5 minutes interval and accessed 
by SNAP from within the pre-processing pipeline. 
 
3.2.2 Copernicus DEM 
 
The Copernicus Digital Elevation Model (DEM)2 is a digital surface model (DSM) which (unlike a 
digital terrain model) includes structures above ground, e.g. buildings, bridges, or vegetation. The 
Copernicus DEM is mainly based on data from the WorldDEM, which is a product originating from 
the TanDEM-X mission, but is further enhanced using auxiliary height data from ASTER, SRTM90, 
SRTM30, GMTED2010 ALOS World 3D-30m and many more. It is available in three resolutions at 
two spatial extent windows, EEA-10 (10m, Europe), GLO-30 (30m, global) and GLO-90 (90m, global). 
Within the scope of the GFM project, we used the 30m sampled global version of the Copernicus 
DEM to achieve a trade-off between a high spatial sampling and a global coverage.  
 
Because SNAP 7/8 only supports SRTM height data internally for geocoding, every other DEM must 
be provided and prepared from outside. Since SAR geocoding routines work with ellipsoid based 3D 
coordinates, commonly used orthometric heights 𝐻, as is the case for the Copernicus DEM, must be 

 
2 https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#C4   

https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#C4
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transformed to ellipsoidal heights ℎ𝑒𝑙𝑙𝑖𝑝𝑠. To do so, geoid undulations (𝑁𝑔𝑒𝑜𝑖𝑑), which are supplied 

by various Earth Gravitational Models (e.g. EGM96 or EGM2008), must be taken into account. These 
parameters are incorporated into the following formula to derive the desired ellipsoidal heights: 
 

ℎ𝑒𝑙𝑙𝑖𝑝𝑠 = 𝐻 + 𝑁𝑔𝑒𝑜𝑖𝑑 Eq. 3-3 

 
SNAP 7/8 only works with one single external DEM file, so both data sets need to be combined to a 
global mosaic. The workflow describing the data flow from the download of both tiled input data 
sets to the creation of the global mosaic in ellipsoidal heights, summarized in Table 4. 
 
Table 4: Summary of the workflow from the download of the 30m Copernicus DEM and EGM2008 
tiled input data sets to the creation of the global mosaic in ellipsoidal heights. 

STEP DESCRIPTION 

1 Download of the tiled 30m Copernicus DEM layers (i.e. 29,310 data files) from the Copernicus Space 
Component Data Access (CSCDA). The zipped data is stored in a continent- and country-based folder 
structure, with unadjusted country names implicating file system issues and data gaps for countries, which 
have an OS-unfriendly name. Those issues could only be solved after manually downloading data of the 
affected countries and a back-filling of the global data set. 

2 Several experiments were conducted to generate a mosaic with common GDAL tools like gdal_warp, 
gdal_merge.py or gdal_translate, but always resulted in artefacts due to a varying pixel sampling across 
different latitudes. Thus, the strategy was changed to apply a mosaicking in two steps, first for each latitude 
band and then merging all latitude bands together. 

3 All Copernicus DEM files with the same pixel spacing were collected and combined to get one mosaic per 
latitude band. 

4 Each mosaic was then resampled to the highest sampling of the Copernicus DEM, which is around 
30m/0.00028° (measured along the equator), was adjusted to match the global extent of (-180°, -90°, 180°, 
90°), converted to Int16 (1m vertical accuracy suffices SAR geolocation), tiled with 512x512 blocks and 
compressed with the ZSTD method. 

5 The global 30m Copernicus DEM mosaic in orthometric heights was then generated by merging all 
resampled latitude bands to one file. 

6 Download of the 2.5’ EGM2008 tiles from http://earth-
info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_gis.html (original source, but deprecated) or 
https://www.agisoft.com/downloads/geoids/ . 

7 All 45°x45° EGM2008 tiles were mosaicked to one global file. 

8 The EGM2008 mosaic was then resampled to the Copernicus DEM mosaic sampling and extent. 

9 The last step directly applied the aforementioned formula on the two mosaics and produced the desired 
output: the global 30m Copernicus DEM mosaic in ellipsoidic heights. 

 
3.2.3 Sentinel-1 Global Backscatter Model 
 
The Sentinel-1 Global Backscatter Model (S1-GBM) was generated by the Remote Sensing Group of 
the TU Vienna, within a dedicated project by the European Space Agency (ESA). The dataset 
describes Earth’s complete land surface for the period 2016-17 by the temporal mean and standard 
deviation of the Sentinel-1 σ0 backsctter in VV- and VH-polarization at a 10 m sampling, giving a 
high-quality impression on surface structures and patterns. 
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In GFM, we use the temporal mean VV and VH σ0 backscatter and VH standard deviation (computed 
jointly from data from all orbits) for the identification of densely vegetated areas, where the 
Sentinel-1 SAR observations are insensitive to floods. 
 
3.2.4 HAND drainage information 
 
The Height Above Nearest drainage (HAND) index Rennó et al. (2008) contains the vertical distance 
between any location and the nearest location in the drainage network with respect to pre-
identified flow directions and by minimizing hydrological distances. The HAND index is calculated 
near-globally (between 60°N and 56°S) based on elevation and drainage direction information 
provided by the Hydrosheds mapping product Lehner et al. (2008). This product was derived based 
on the digital elevation model of the Shuttle Radar Topography Mission (SRTM), which had to be 
hydrologically conditioned by using a sequence of automated procedures such as void-filling, 
filtering, stream burning, and upscaling techniques as well as manual corrections (Lehner et al., 
2008). 
 
In the GFM project, the HAND index was used to create the HAND Exclusion Mask (HAND-EM) which 
helps us to reduce water-lookalike classes depending on the hydrologic–topographic setting and 
separate the flood-prone from non-flood prone areas. 
 
3.2.5 Land cover data 
 
To support the masking of area where the Sentinel-1 sensors as C-band radar are in general 
insensitive to floods, we collect land cover data sets. Furthermore, the Affected Land Cover product 
layers provides such information to the users of the individual GFM products.The Global Human 
Settlement Layer (GHSL) is a static urban mask generated by JRC from Landsat-8 optical imagery at 
30 m resolution. Information about the Affected Population (i.e., number of people living within 
flooded area) is derived from the GHSL-POP dataset. GHS-BUILD-S2 dataset contains the 
information about the build up area expressed in terms of probability grid at 10 m resolution. This 
information is derived from a Sentinel-2 global image composite. 
 
The World Settlement Footprint 2015 (WSF2015) is a static urban mask generated by DLR from 
Sentinel-1 and Landsat-8 data at 10m resolution in 2015. The GHSL and the WSF2015 will be used 
to highlight urban areas where flood detection is probably not possible due to the side-looking 
viewing geometry of SAR-satellites and complex interactions of the SAR signal with urban structures. 
 
The Global forest change dataset (Hansen et al., (2013); version 1.8: 
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8/download.html) 
characterises global forest extent and change from 2000 through 2020 and is based on the time-
series analysis of Landsat images in characterizing global forest extent and change from 2000 
through 2020. The Global forest change dataset was used to highlight the densely vegetated areas, 
where their identification based on Sentinel-1 Global Backscatter Model (S1-GBM) was not possible 
because of the irregular temporal coverage of Sentinel-1. 
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4 Generation of the GFM product output layers 
 
The new Global Flood Monitoring (GFM) product of the Copernicus Emergency Management Service 
provides a continuous monitoring of floods worldwide by processing and analysing in near real-time 
all incoming Sentinel-1 Synthetic Aperture Radar (SAR) images acquired in Interferometric Wide 
Swath (IW) mode, and generating the eleven output layers of flood information that are listed in 
Table 1. The remainder of this Section presents the key technical details underlying the generation 
of the eleven GFM product output layers. 
 
4.1 Output layer “S-1 observed flood extent” 
 
The GFM product output layer “S-1 observed flood extent” shows the flooded areas which are 
mapped in near real-time from Sentinel-1 (S-1) satellite imagery, as the difference between the GFM 
output layers “S-1 observed water extent” and “S-1 reference water mask”. The four flood mapping 
algorithms which are used by the GFM product to generate the output layer “S-1 observed flood 
extent” are described below. 
 

4.1.1 Flood mapping algorithm 1 (LIST) 

 
GFM flood mapping algorithm 1 requires three main inputs: the most recent SAR scene to be 
processed, a previously recorded overlapping SAR scene acquired from the same orbit called 
reference SAR scene hereafter together with the corresponding “previous” ensemble flood extent 
map. As it is a change detection algorithm, it aims at detecting and mapping all increases and 
decreases of floodwater extent with respect to a reference one. A change detection approach is 
adopted because it allows to differentiate floodwater from permanent water bodies and, at the 
same time, filter out classes having water-like backscattering values such as shadows or smooth 
surfaces. Moreover, in order to reduce false alarms caused by different types of unrelated changes 
(e.g. vegetation growth), a reference image acquired close in time is used. Sentinel-1 fulfils well this 
latter requirement since it has a repeat cycle of 6 days. Moreover, to reduce false alarms and to 
speed-up the analysis, it uses as optional input data the exclusion mask and the HAND map. Each 
time a new Sentinel-1 scene is ingested and pre-processed, 𝐼𝑡0

𝑆1, the algorithm processes the pair of 
S1 scenes consisting of the new image, 𝐼𝑡0

𝑆1, and the previously recorded overlapping Sentinel-1 
image acquired from the same orbit, 𝐼𝑡0−1

𝑆1 , and it provides the new floodwater map, 𝐹𝑀𝑡0, updating 
the previous floodwater map, 𝐹𝑀𝑡0−1. In the end, the algorithm makes use of the changes it mapped 
to update the most recently computed ensemble flood extent map (𝐹𝑀𝑡−1). 
 
Since the preprocessed Sentinel-1 images are already log-transformed, the change image is 
computed as the backscatter difference between 𝐼𝑡0

𝑆1 and 𝐼𝑡0−1
𝑆1 . The algorithm 1 is based on the 

assumption that the distributions of the log-ratio image and the log-transformed single SAR image 
follow the Gaussian model. This assumption is based on evidence that the PDF of a random variable 
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affected by speckle approaches a Gaussian distribution Ulaby et al. (1989). 
 
As in all statistical floodwater or change detection mapping algorithms, the parameterization of the 
distributions of “water” and “change” classes is conditioned by the identifiability of the respective 
classes. This depends on the shape of the histogram. More explicitly, some classes may not be easily 
identifiable on the histogram typically when flooded or changed areas represent only a small 
percentage of the total image. To circumvent such a limitation, algorithm 1 locates areas of the 
image where pixels belonging to the classes of interest are rather well balanced. To achieve this, the 
algorithm identifies regions in the flooded image, 𝐼𝑡0−1

𝑆1 , and the corresponding difference image, 

𝐼𝑡0−1
𝑆1 − 𝐼𝑡0

𝑆1, that exhibit bimodal histograms with two classes, i.e. target class and its background. 
Moreover, the two classes are i) well separated, ii) represented with a similar frequency and iii) that 
can be modelled as Gaussian distributions.  
 
The algorithm is therefore composed of two main steps: 1) identification of bimodal areas hereafter 
termed Bimodal Mask (BM), with sufficient target class presence to enable a robust 
parameterization of the PDFs of both target and background classes; 2) use of the previously 
parameterized PDFs to map the target class in the entire image via a sequence of thresholding and 
region growing. Region growing assumes that pixels constituting the target class are clustered rather 
than randomly spread out over the entire image. The region growing algorithm needs to determine 
two threshold values, one for selecting its seeds and one for stopping the region growing process. 
The thresholds for the seeds and the tolerance criterion to stop the growing process are selected 
based on the distribution fitted to the class of interest. The steps to parametrize the PDFs of the 
target and background classes are described below. 
 
Considering an image I, it is hypothesized that two classes are present, where 𝐺1(𝑦) and 𝐺2(𝑦) are 
their distribution functions and y is the measurement. It is further assumed that both distributions 
can be approximated by Gaussian curves. Finally, it is hypothesized that the prior probabilities of 
the two classes are strongly unbalanced. This last assumption is usually verified when processing 
images that cover large areas and where changes only impact a small part of the image. When this 
happens, the smallest class is dominated by the other class and its distribution is practically 
indistinguishable in the global histogram, thereby causing the classification problem to be ill-posed 
and the selection of the threshold highly uncertain Gong et al. (2016), Aach et al. (1995). 
 
Hence, in order to cope with this ill-posed problem of unbalanced populations, areas where the two 
classes are more balanced are identified. The adopted hierarchical split based approach (HSBA) 
consists of two main steps. First, the image X is split into separate sub-regions (i.e. tiles) using a 
quad-three decomposition . Next, the tiles showing a clear bimodal behaviour with two Gaussian 
balanced populations are selected. 
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Figure 4: Example of a quad-tree tailing with three levels. 

The hierarchical tiling consists of iteratively decomposing image regions into four equally sized 
quadrants, the so-called sub-quadrants. In the hierarchical approach - a schematic representation 
of which is shown in Figure 4 - each quadrant or sub-quadrant is related to a given node in the tree 
and has exactly four children or no children at all. The latter is referred to as a ‘leaf node’. Each node 
is associated with a specific region of the image Laferte et al (2000). Let I be an image and 𝑆𝑛𝑜𝑑𝑒𝑠 

the ensemble of tree nodes. A node in the i-th tree level is denoted 𝑆𝑗
𝑖 ∈ 𝑆𝑛𝑜𝑑𝑒𝑠, where S0 is the root 

node, associated with the tile that completely encloses I, and SN is the ensemble of nodes in the 

lowest level having the smallest tile size. The tile related to 𝑆𝑗
𝑖 ∈ 𝑆𝑛𝑜𝑑𝑒𝑠 is split into four tiles in the 

next lower level (i+1). It is itself one of the four quadrants of a tile in the level above (i-1). Thus, the 
resulting quad-tree decomposition can be expressed as: 
 

𝑆𝑛𝑜𝑑𝑒𝑠 = {𝑆0, 𝑆1, . . , 𝑆𝑖 𝑠. 𝑡. ⋃ 𝐼[𝑆𝑗
𝑖]

4𝑖

𝑗=1

= 𝐼 = 𝐼[𝑆0], 𝑖 = 0,1, . . , 𝑁𝑛𝑜𝑑𝑒𝑠} , Eq. 4-1 

 

where 𝐼[𝑆𝑗
𝑖] is the portion of the image related to node 𝑆𝑗

𝑖 ∈ 𝑆𝑛𝑜𝑑𝑒𝑠 and U represents the Union 

operator (see Figure 4). 
 
The lowest level of the quad-tree decomposition is fixed based on the minimum tile size that still 
guarantees statistical representativeness. A tile is selected based on three conditions (C1, C2, C3): 
 

▪ C1: The tile histogram, ℎ(𝐼[𝑆𝑗
𝑖]), is clearly bimodal; 

▪ C2: The two populations represented in ℎ(𝐼[𝑆𝑗
𝑖]) are normally distributed; 

▪ C3: Each population in ℎ(𝐼[𝑆𝑗
𝑖]) is present at a frequency of at least 10% of the frequency of 

the other class Bazi et al. (2007). 
 

It is hypothesized that each ℎ(𝐼[𝑆𝑗
𝑖]) is a sum of two Gaussian curves, i.e. 
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ℎ(𝐼[𝑆𝑗
𝑖]) = ℎ(𝑦) ≈ ℎ𝑓(𝑦) = 𝐺1(𝑦) + 𝐺2(𝑦) = 𝐴1𝑒

−(𝑦−𝜇1)2

2𝜎1
2

+ 𝐴2𝑒
−(𝑦−𝜇2)2

2𝜎2
2

 
Eq. 4-2 

 
where A1 and A2 are scale factors set to the maxima of the two curves; μ1 and μ2 are the distribution 
means; 𝜎1and 𝜎2  are the distribution standard deviations; y is the measurement and ℎ𝑓(𝑦) is the 

fitted histogram. 
 
In order to estimate the parameters of the two Gaussian curves in (Eq. 4-2), 𝐺1(𝑦) and 𝐺2(𝑦), which 
in combination compose the histogram, the Levenberg-Marquardt algorithm is applied. It solves the 
nonlinear least squares problems by combining the steepest descent and inverse-Hessian function 
fitting methods Marquardt et al. (1963). Nonlinear least squares methods involve an iterative 
optimization of parameter values to reduce the sum of the squares of the errors between a fitting 
function and histogram values. Iterations are carried out until three consecutive repetitions fail to 
change the chi-squared value by more than a specified tolerance amount, or until a maximum 
number of iterations has been reached. The initial guess of the parameter values should be as close 
as possible to the actual values, otherwise the solution may not converge. The Otsu approach Otsu 
et al. (1979) is used for retrieving the first guess values. Given the Otsu-based thresholds, 𝜏𝑂𝑡𝑠𝑢for 
h(y), the first guess values (denoted by the superscript 0) of the parameters of the two Gaussian 
distributions defined in (2) can be derived as: 
 

𝜇1
0 = 𝑚𝑒𝑎𝑛(ℎ(𝑦 < 𝜏𝑂𝑡𝑠𝑢𝑂𝑇

)), 𝜇2
0 = 𝑚𝑒𝑎𝑛(ℎ(𝑦 > 𝜏𝑂𝑡𝑠𝑢)),   Eq. 4-3 

𝜎1
0 = 𝑠𝑡𝑑( ℎ(𝑦 < 𝜏𝑂𝑡𝑠𝑢)), 𝜎2

0 = 𝑠𝑡𝑑( ℎ(𝑦 > 𝜏𝑂𝑡𝑠𝑢)) ,  Eq. 4-4 

𝐴1
0 = ℎ(𝑦 = 𝜇1

0) , 𝐴2
0 = ℎ(𝑦 = 𝜇2

0) .  Eq. 4-5 

 
When all distributions have been fitted, the Ashman D (AD) coefficient Ashman et al. (1994), the 
Bhattacharyya Coefficient (BC) Aherne et al. (1998) and the Surface Ratio (SR) of the two classes on 
image I are used for evaluating the bimodality of the histogram, the Gaussianity of each class 
distribution and the balance of each class in the image, respectively. 
 
The AD coefficient quantifies how well two Gaussian distributions are separated, by considering the 
distance between their mean values and their dispersions, i.e. standard deviations, and it is 
expressed as: 
 

𝐴𝐷(ℎ𝑓(𝑦)) = √2
|𝜇1 − 𝜇2|

√(𝜎1
2 + 𝜎2

2)
 Eq. 4-6 

 
For a mixture of two Gaussian distributions, AD > 2 is required for a clear separation of the 
distributions Ashman et al. (1994). Consequently, the condition C1 for selecting or not a tile is 
defined as:  
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𝐶1(𝐼[𝑆𝑗
𝑖]) = {

1 𝑖𝑓 𝐴𝐷(ℎ𝑓𝐼[𝑆𝑗
𝑖] > 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eq. 4-7 

 
The BC evaluates the similarity of two distributions. It is used here to verify if ℎ𝑓(𝑦) is a good 

approximation of h(y), meaning that the hypothesis of having two Gaussian distributions is verified 
and defined as: 
 

𝐵𝐶 (ℎ(𝑦), ℎ𝑓(𝑦)) = ∑ √ℎ(𝑦𝑘)√ℎ𝑓(𝑦𝑘)

𝑘

 Eq. 4-8 

 
where k is the corresponding bin of the two discrete histograms. In the case of two almost identical 
histograms, the BC approaches 1 Aherne et al. (1998). As an approximation, we assume that BC has 
to be higher than .99 for a good fitting. Consequently, the condition C2 for selecting or not a tile is 
computed as: 
 

𝐶2(𝐼[𝑆𝑗
𝑖]) = {

1 𝑖𝑓 𝐵𝐶(ℎ(𝐼[𝑆𝑗
𝑖]), ℎ𝑓(𝐼[𝑆𝑗

𝑖]) ) > .99

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eq. 4-9 

 
Once all distributions have been parameterized, the verification of the remaining condition C3 is 
straightforward. To do so, the SR between the smallest and the largest class is computed, i.e. 
 

𝑆𝑅(ℎ𝑓(𝑦)) =
min (𝐴1𝜎1√2𝜋,  𝐴2𝜎2√2𝜋)

max (𝐴1𝜎1√2𝜋,  𝐴2𝜎2√2𝜋)
 Eq. 4-10 

 
Considering that C3 stipulates that the smaller population should represent at least 10% of the other 
one, condition C3 becomes: 
 

𝐶3(𝐼[𝑆𝑗
𝑖]) = {

1 𝑖𝑓 𝑆𝑅(ℎ𝑓(𝐼[𝑆𝑗
𝑖])) > .1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  Eq. 4-11 

 
Technically speaking, the tiles of the entire tree are scanned starting from S0 until SN. Any node (and 

the associated tile) that fulfils the conditions 𝐶1(𝐼[𝑆𝑗
𝑖]) = 1 and 𝐶2(𝐼[𝑆𝑗

𝑖]) = 1 and 𝐶3(𝐼[𝑆𝑗
𝑖]) = 1 

(see Eq. 4-8 to Eq. 4-11) is finally selected and its children, tiles at levels with higher i, are no longer 
considered as possible tile candidates. These processing steps result in a binary map, henceforth 
named Bimodal Mask (BM). BM includes regions in I where the distinctive populations, G1 and G2, 
are present with a sufficient number of pixels and where their respective distribution functions are 
clearly identifiable with more balanced prior probabilities. 
 
At this point, all subtiles fulfilling the three conditions C1, C2 and C3 are selected. Hence, the 
histogram of all the pixels enclosed by the selected tiles, i.e. where BM=1, has to be clearly bimodal. 
This histogram, ℎ(𝐼[𝑤ℎ𝑒𝑟𝑒 𝐵𝑀 = 1]), is used to estimate the Gaussian distributions of the two 
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classes of interest, hereafter named 𝐺1
𝐵𝑀(𝑦) and 𝐺2

𝐵𝑀(𝑦). To do so, the Levenberg-Marquardt 
algorithm is re-applied to fit two Gaussian curves on the histogram pixel values obtained from the 
union of all selected tiles. Starting from the two derived Gaussian distributions, the objective is to 
select the threshold for separating the two classes. 
 
The algorithm needs to handle different type of flood events, from those lasting few days up to 
those lasting weeks, as the case of monsoon events. As a consequence, the algorithm assumes that 
the floodwater extent in the newly acquired S1 scene, 𝐼𝑡0

𝑆1, i) increases or ii) only decreases. 
Regarding the case (i), increase, the algorithm assumes that there are also areas where the water 
extent can recede. These two different floodwater evolutions are handled subsequentially: the 
condition (i) is checked firstly, if it is satisfied the newly floodwater is mapped, if not it is checked 
the condition (ii) and the receding water is removed from the previous floodwater map. If both 
conditions are not satisfied means that the floodwater states in 𝐼𝑡0

𝑆1 does not change with respect 

to the previous acquired scene, 𝐼𝑡−1
𝑆1 . 

 

i) First, the image difference is computed between 𝐼𝑡0
𝑆1 and 𝐼𝑡−1

𝑆1 , i.e. 𝐼𝐷
𝑆1= 𝐼𝑡0

𝑆1 - 𝐼𝑡−1
𝑆1 , then HSBA is 

applied in parallel to 𝐼𝑡0
𝑆1 and 𝐼𝐷

𝑆1 in order to select tiles that show a bimodality behaviour on both 
images, guaranteeing that 𝐼𝑡0

𝑆1 is affected by floodwater and 𝐼𝐷
𝑆1 is characterized by a class 

representative of a decrease of backscattering with respect to 𝐼𝑡−1
𝑆1 . The final BM is used to estimate 

PDFs of water and non-water, PDF(W) and PDF(NW), in 𝐼𝑡0
𝑆1 and change and non-change in 𝐼𝐷

𝑆1, 
PDF(C) and PDF(NC). Before to estimate the four PDFs the permanent water layer (from Copernicus 
DEM or Permanent water from GFM) is removed in order to have PDFs more representative of 
floodwater pixels in both 𝐼𝑡0

𝑆1 and 𝐼𝐷
𝑆1. All estimated PDFs are used to apply a 2D region growing, 𝐼𝑡0

𝑆1 
and 𝐼𝐷

𝑆1, where the thresholds for seeds and to stop the region growing are defined as: 
 
Seeds: Pixels whose posterior probability of water class 𝑝(𝑊|𝜎0) ≥ 0.7 and posterior probability of 
change class 𝑝(𝐶|∆𝜎0) ≥ 0.7 are selected as seeds for region growing. 
 
Stop growing: Pixels with 0.3 <  𝑝(𝑊|𝜎0) < 0.7 and 0.3 <  𝑝(𝐶|∆𝜎0) < 0.7 are subject to region 
growing. The stop growing threshold pair (𝜎𝑠𝑡𝑜𝑝

0 , ∆𝜎𝑠𝑡𝑜𝑝
0 ) is the one minimizing the root-mean-

squared-error (RMSE) between 𝐺1
𝐵𝑀(𝑦) and the histogram resulting from region growing 

ℎ𝑟𝑔
𝐵𝑀(𝑦𝑠𝑒𝑒𝑑, 𝑦𝑟𝑔). 

 
𝑝(𝑊|𝜎0) and 𝑝(𝐶|∆𝜎0) are inferenced via the Bayes theorem: 
 

𝑝(𝑊|𝜎0) =  
𝑝(𝜎0|𝑊)𝑝(𝑊)

𝑝(𝜎0)
 Eq. 4-12 

𝑝 (𝐶|∆𝜎0
) =  

𝑝 (∆𝜎0
|𝐶) 𝑝(𝐶)

𝑝 (∆𝜎0
)

 Eq. 4-13 

𝑝(𝜎0) =  𝑝(𝜎0|𝑊)𝑝(𝑊) + 𝑝(𝜎0|𝑁𝑊)𝑝(𝑁𝑊) Eq. 4-14 

𝑝(∆𝜎0) =  𝑝(∆𝜎0|𝐶)𝑝(𝐶) + 𝑝(∆𝜎0|𝑁𝐶)𝑝(𝑁𝐶) Eq. 4-15 
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Where 𝑝(𝜎0) is the marginal distribution of backscatter values in 𝐼𝑡0
𝑆1, 𝑝(𝜎0|𝑊) and 𝑝(𝜎0|𝑁𝑊) are 

conditional probabilities of water and non-water classes, respectively, 𝑝(𝑊) and 𝑝(𝑁𝑊) are prior 
probabilities of water and non-water classes, both are set to 0.5. Similarly, 𝑝(∆𝜎0) is the marginal 
distribution of backscatter difference values in 𝐼𝐷

𝑆1, 𝑝(∆𝜎0|𝐶) and 𝑝(∆𝜎0|𝑁𝐶) are conditional 
probabilities of change and non-change classes, respectively, 𝑝(𝐶) and 𝑝(𝑁𝐶) are prior probabilities 
of water and non-water classes, both are set to 0.5. 
 
From the selected seeds are removed all those that occur in areas masked out by the HAND mask 
in order to avoid that false alarms in not prone flood areas could spread in plausible areas. The 
newly detected flooded areas are used to update the previous floodwater map. 
 
The algorithm checks also areas where floodwater could have receded with respect to the previous 

acquisition. To do this, P(W) and P(NW) are used to apply a 1D region growing to map water on 𝐼𝑡0
𝑆1. 

The resulting water map is compared with the previous floodwater map and only those pixels that 
belonging to water in both maps are mapped as floodwater in the new map. 
 
The procedure above mentioned can have a dual role, to map new floodwater and at the same time 
to check the occurrence of a flood event which is assured by the selection or not of tiles of BM. If 
BM is an empty mask means that there is not a new flood event in the region or that the flood 
already ongoing at the time t-1 is only receding. In this latter case, the step ii is applied. 
 
ii) In this case HSBA is applied only to 𝐼𝑡0

𝑆1 to fit P(W) and P(NW), which are subsequentially used for 

the 1D region growing on 𝐼𝑡0
𝑆1 to map water. The resulting water map is compared with the previous 

floodwater map and only those pixels that belonging to water in both maps are mapped as 
floodwater in the new map.  
 
The exclusion layer, the HAND mask and the ocean mask from the Copernicus DEM are applied to 
mask out all pixels which are not part of flood prone areas. 
 

4.1.2 Flood mapping algorithm 2 (DLR) 

 
GFM flood mapping algorithm 2 requires a full Sentinel-1 scene as the main input and further 
exploits three ancillary raster datasets: a digital elevation model (DEM), areas not prone to flooding 
and reference water. Initial descriptions of the algorithm were published by Martinis et al. (2015) 
and Twele et al. (2016). 
 
The algorithm applies a parametric tile-based thresholding procedure by labelling all pixels with a 
backscatter value lower than a threshold to the class water. The threshold is computed on a smaller, 
limited number of subsets of the SAR scene and applied to the entire scene. Subsets used to define 
the threshold are selected for based on their backscatter values, which should consist of both low 
backscatter and a strong variation in therein. 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 27 of 75 

 

 
In a first step, a bi-level quadtree structure is generated with the division of a SAR scene into 𝑁𝑡𝑖𝑙𝑒𝑠 

quadratic non-overlapping subsets (parent tiles) of defined size c² on level S+ (parent tiles). Each 
parent tile is represented by four quadratic child objects of size (c/2)² on level S- ( 

 
Figure 5). The variable c is empirically set to 200 pixels. A limited number of tiles are selected out of 
𝑁𝑡𝑖𝑙𝑒𝑠, based on the probability that the tiles contain a bi-modal mixture distribution of the water 
and non-water classes. 
 

 
 
Figure 5: The SAR scene is tiled into N quadratic non-overlapping tiles S+. µ+ is the mean 
backscatter value of one tile S+. Each tile S+ is further divided into 4 sub tiles S-. µ- is the mean 
backscatter value of one sub tile S-. 
 
In rare cases, a parent tile intersects with the edge of a SAR scene, which results in dimensions that 
are smaller than the pre-defined size c². Consequently, these tiles are excluded from the threshold 
computation ( 
 
Figure 6). Furthermore, due to the near-cross polar orbits of Sentinel-1, the along track direction 
forms an angle of ~10° with respect to the north-south direction, which can result in parent tiles 
with variable amounts of no-data content. If no-data comprises of > 50 % of the overall data content, 
the tile is also excluded from the threshold computation ( 
 
Figure 6). 
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Figure 6: Red tiles intersect with the edge of the SAR scene. Orange tiles have less than 50 % valid 
data content. Only green tiles are valid and considered for the threshold computation. 
 
A parent tile S+ must fulfil two conditions to be selected as a representative subset (Eq. 4-16): 
 

▪ S+ must have a lower mean than the global mean of the SAR scene; and 
▪ S+ must have a high standard deviation, which is computed on all S-. 

 

𝑆+ = {
𝜇+ < 𝜇𝑔𝑙𝑜𝑏𝑎𝑙

𝜎𝜇
+ ≥ 𝜇𝜎𝜇

+ + 𝑥 ∙ 𝜎𝜎𝜇
+

, with x = 2 by default Eq. 4-16 

 
Considering the first condition, for each parent tile S+, the algorithm detects the mean backscatter 
value µ+ of S+, which must be lower than the mean backscatter value µglobal of the entire SAR scene 
(Eq. 4-17). We conduct this step to select for tiles with low backscatter content that are likely to 
contain water features. 
 

𝜇+ < 𝜇𝑔𝑙𝑜𝑏𝑎𝑙 Eq. 4-17 

 
Considering the second condition, for each of the four child tiles S- belonging to a parent tile S+, the 
algorithm detects the mean backscatter value µ- of S-. In a further step, we compute the standard 
deviation σµ

+ of these four mean backscatter values [µ1
-, µ2

-, µ3
-, µ4

-] (Eq. 4-18). We conduct this step 
to characterize the backscatter distribution of each parent tile S+.  
 

𝜎𝜇
+ = √

1

𝑛 − 1
∑(𝜇𝑖

− − 𝜇−̅̅̅̅ )2

𝑛=4

𝑖=1

 Eq. 4-18 
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We assume that tiles with a low mean backscatter µ+ and a high standard deviation σµ

+ show a 
bimodal backscatter distribution and are likely to contain both water and non-water features. In 
order to fulfil condition 2, we select a parent tile S+ with a standard deviation σµ

+ that is as high as 
possible. When investigating σµ

+ of a specific tile and bringing it into relation to other tiles, we 
require σµ

+ to be greater or equal to the mean 𝜇𝜎𝜇
+  of all standard deviations σµ

+ (Eq. 4-19), as well 

as two times the standard deviation 𝜎𝜎𝜇
+ of all standard deviations σµ

+ (Eq. 4-20). Figure 7 depicts a 

graphical representation of the concept. In Figure 7, plotting all standard deviations σµ
+ into a 

gaussian distribution, a standard deviation σµ+ that is greater or equal to the distribution’s mean 
would still leave too many parent tiles S+, i.e. the majority of the tiles may not show a bimodal 
backscatter distribution. By restricting σµ

+ to even exceed the mean and one standard deviation we 
focus on a small number of parent tiles where the standard deviation σµ

+ is high enough to ensure 
bimodal backscatter distributions. 
 

 
 
Figure 7: The standard deviation σµ

+ in relation to further statistical parameters. (See text for 
details). 

 

𝜇𝜎𝜇
+ =

1

𝑛
∑ 𝜎𝜇

+
𝑖

𝑛

𝑖=1

 Eq. 4-19 

𝜎𝜎𝜇
+ = √

1

𝑛 − 1
∑ (𝜎𝜇

+
𝑖

− 𝜎𝜇
+̅̅ ̅̅ )

2
𝑛

𝑖=1

 

Eq. 4-20 

 
Applying Eq. 4-16 to all valid parent tiles selects suitable tiles for further threshold computation. If 
the count of suitable parent tiles S+ is less than or equal to 10, Eq. 4-16 is re-applied with x = 1.28, 
thus the range of allowed standard deviations increases with the inclusion of more parent tiles into 
the selection. If the count of suitable parent tiles S+ exceeds 10, we assume that there is a statistically 
sound basis of representative tiles and use the five tiles with the highest standard deviation 𝜎𝜇

+, i.e. 

the highest standard deviation of the means of the corresponding child tiles for further threshold 
computation. 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 30 of 75 

 

 
Each of the five final parent tiles should have a bimodal backscatter distribution, which is likely to 
contain a valid water-land-boundary ( 
 
Figure 8). We apply the thresholding algorithm of Kittler & Illingworth (1986) to each of the five 
parent tiles. The algorithm is an iterative, cost-minimization approach, where the histogram is split 
into two classes with a threshold that identifies the class boundary. The optimal threshold τ 
separates both classes with minimum effort ( 
 
Figure 8). In Figure 8, if selecting a pure land tile (a1), the corresponding histogram (a2) is unimodal. 
If selecting a tile with both low and high backscatter values (b1), the corresponding histogram (b2) 
is bimodal and we assume depicting a water-land-boundary. If applying a threshold to the histogram 
b2, both classes can be separated giving the class water in the left part. 
 

 
 
Figure 8: Selecting suitable subsets (green) from the SAR scene. (See text for details). 
 
The final threshold separating the water and land classes is the mean of the thresholds of the parent 
tiles τ+ (Eq. 4-21). 
 

𝜏 =
1

𝑛
∑ 𝜏𝑖

+

𝑛=5

𝑖=1

 Eq. 4-21 

 
We further compute the mean of the water class µwater according to Kittler & Illingworth (1986), 
which describes the geometric centroid of the separated class (Eq. 4-22, with 𝜇𝑖(𝜎0) as a function 
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of the SAR backscatter value 𝜎0. h(g) is the SAR backscatter histogram, and g are the histogram bins 
g. 𝑃𝑖(𝜎0) represents the summed-up histogram h(g), up to the class-separating threshold (Eq. 4-23). 
As the thresholding algorithm is an iterative process, a and b denote updatable greyscale values (i.e. 
SAR backscatter) within the value range. 
 

𝜇𝑖(𝑇) =
∑ ℎ(𝑔)𝑏

𝑔=𝑎 𝑔

𝑃𝑖(𝜎0)
 Eq. 4-22 

𝑃𝑖(𝜎0) = ∑ ℎ(𝑔)

𝑏

𝑔=𝑎

 Eq. 4-23 

 
An average of all “water class centers” µwater is also computed with the same method as the mean 
threshold τ for the entire SAR scene. 
 
Applying this threshold to the entire SAR scene returns an initial basis for water detection. 

4.1.3 Flood mapping algorithm 3 (TUW) 

 
GFM flood mapping algorithm 3 Bauer-Marschallinger et al, (in review) requires three inputs: the 
SAR scene to be processed, a projected local incidence (PLIA) layer, and the corresponding 
parameters of the harmonic model. Based on these inputs, the probability of a pixel belonging to 
the flood or non-flood class is defined. For this purpose the a-priori flood and non-flood probability 
density function (PDF) is required. For the values of an incoming Sentinel-1 image, the most likely 
class is selected by the use of the Bayes decision rule. The algorithm’s output consists of a flood 
extent map and the corresponding estimation of the classification’s uncertainty.  
 
Flood backscatter probability density function: 
 
Due to specular reflections of the radar pulses by water surfaces, the received backscatter 
intensities by the sensor are significantly lower compared to most other land cover types. 
Consequently, a temporarily inundated surface is detectable by a significant drop in its backscatter 
relative to the time series. In order to ensure the drop results from inundation and no other effect, 
a detailed statistical knowledge of the backscatter behaviour over water surfaces is required. The 
proposed concept is the definition of the flood backscatter probability density function 𝑝(𝜎0|𝐹) for 
any given incidence angle 𝜃. It is assumed that the 𝑝(𝜎0|𝐹) is a normal distribution and can be 
parametrized by the statistical value-pair of mean and a standard deviation.  
 

Therefore, various backscatter observations (further referred to as 𝜎𝑊,𝜃
0 ) and their respective 

incidence angles were collected over oceans and inland waters from the Sentinel-1 datacube. By 

sorting the water backscatter collection 𝜎𝑊,𝜃
0  along the incidence angle (Figure 9), the expected 

indirect relation of water backscatter values and incidence angles can be confirmed.  
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Figure 9: Scatterplot of water backscatter observations grouped by 0.5 degree bins (top). Standard 
deviation of these bins (bottom). 
 
The mean backscatter value at a specific incidence angle can be derived by the use of a linear 
regression. The corresponding gradient was found to be 0.394 (red line in upper Figure 9). In order 
to analyse the standard deviation at a specific incidence angle, the water backscatter values were 
grouped into 0.5 degree bins. As shown in the bottom of Figure 9, the gradient of the standard 
deviation per bin is small with 0.008. Therefore, homoscedasticity is assumed and the total standard 
deviation is calculated by the square root of the sum of squared estimate of errors (𝑆𝑆𝐸), normalised 
with respect to the number of data points (𝑁𝑝𝑜𝑖𝑛𝑡𝑠). To summarize, the flood backscatter probability 

density function 𝑝(𝜎0|𝐹) is defined by: 
 

𝑚𝑒𝑎𝑛( 𝜎𝑊,𝜃
0 ) =  −0.394𝜃 − 4.142[𝑑𝐵] Eq. 4-24 

𝑠𝑡𝑑(𝜎𝑊,𝜃
0 ) =  √

𝑆𝑆𝐸

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 − 2
= 2.7 [𝑑𝐵] 

Eq. 4-25 

 
Non-flood probability density function: 
 
In order to model the normal, non-flooded circumstances, we propose the use of the harmonic 
model (details given in Section 3.1.3). The harmonic model allows retrieving an expected 

backscatter value 𝜎𝑡,𝑟
0̂  for any day of the year 𝑡𝑑𝑎𝑦 and a specific relative orbit 𝑟. Therefore, the 

backscatter’s seasonality is modelled by defining the pixel’s harmonic parameters (𝐶𝑖, 𝑆𝑖 and 𝜎0̅̅ ̅) 
based on its backscatter time-series 𝜎𝑟

0 (see Eq. 3-1). Furthermore, this model is taken as base of 
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the non-flood probability density function 𝑝(𝜎0|𝑁𝐹),which is assumed to be a normal distribution. 

The mean backscatter value is set to the expected backscatter of the harmonic model 𝜎𝑡,𝑟
0̂ . As 

mentioned in Section 3.1.3, in addition to the harmonic parameters the standard deviation 𝑠 of the 
harmonic model is used as an input for the algorithm and standard deviation of the PDF. 
 

𝑚𝑒𝑎𝑛( 𝜎𝑡,𝑟
0 ) =  �̂�𝑡,𝑟

0  Eq. 4-26 

𝑠𝑡𝑑(𝜎𝑡,𝑟
0 ) = 𝑠 Eq. 4-27 

 
A redundancy criterion is introduced to reduce the possibility of ill-fitting harmonic parameters 
(especially for sparse data sets). This criterion makes use of the NOBS layer (introduced in Section 
3.1.3) which indicates the number of valid observations used for the estimation of the harmonic 
parameters. Given the requisite 2k + 1 samples for a unique solution to the harmonic equation, 
redundancy criteria is applied as a multiple of this number. Since the pixels which do not match the 
redundancy criteria are excluded from the flood mapping procedure, one needs to find a balance 
between number of excluded pixels and introduced noise. Based on initial tests, a redundancy value 
of 4x, e.g. 28 samples per pixel stack, can be set in order to minimizing noise 10, specifically at edges 
where sparse samples might be present.  
10 
Bayesian Decision: 
 
With the per-pixel knowledge of the relative orbit 𝑟, the day of year 𝑡𝑑𝑎𝑦 and the incidence angle 𝜃, 

one is able to define the flood backscatter probability density function 𝑝(𝜎0|𝐹) and the non-flood 
probability density function 𝑝(𝜎0|𝑁𝐹) for each pixel. By using these PDF the belonging of the 
incoming Sentinel-1 image to either the flood (F) or non-flood (NF) class can be determined on a 
pixel-level. Therefore, the Bayes decision rule makes use of the class’ posterior probability: 
 

𝑃(𝐹|𝜎0) =  
𝑝(𝜎0|𝐹)𝑃(𝐹)

𝑝(𝜎0)
 Eq. 4-28 

𝑃(𝑁𝐹|𝜎0) =  
𝑝(𝜎0|𝑁𝐹)𝑃(𝑁𝐹)

𝑝(𝜎0)
 

Eq. 4-29 

 
Where 𝑃(𝐹) and 𝑃(𝑁𝐹) are called prior probabilities and represent the prior knowledge of the 
pixel’s belonging to a certain class. Since no prior information is available, it is set to equal weight 
(0.5). The evidence 𝑝(𝜎0) scales the posterior probabilities between 0 and 1 and is defined by: 
 

𝑝(𝜎0) =  𝑝(𝜎0|𝐹)𝑃(𝐹) +  𝑝(𝜎0|𝑁𝐹)𝑃(𝑁𝐹) Eq. 4-30 

 
By selecting the class (𝑐), featuring the maximum posterior probability the Bayes decision rule selects 
the most likely class. Details can be seen within Eq. 4-31, where the class set 𝑓𝑗 =  {𝑓1, 𝑓2} = {𝐹, 𝑁𝐹} 

includes the flood (F) and non-flood (NF) classes. Figure 11 shows the decision step graphically. 
Finally, each pixel’s belonging to the flood (F) class generates the preliminary binary flood extent 
map. 
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𝑐 = arg 𝑚𝑎𝑥𝑗𝑃(𝑓𝑗|𝜎0) Eq. 4-31 

 
Uncertainty Values: 
 
The algorithm provides the ability to quantify the uncertainty of the classification by the use of the 
conditional error 𝑃(𝑒𝑟𝑟𝑜𝑟|𝜎0). This measure is the posterior probability of the less probable class 
(i.e. the class not selected as flood), is defined between 0.0 and 0.5, and directly quantifies the 
uncertainty of the classification decision. 
 

 
 
Figure 110: Exemplary Bayes flood mapping process for a single pixel. Including the probability 
density function and posterior probability of the flood and non-flood class. In this case the 
backscatter value of -19.5dB would be classified as flood. 
 
Low-Sensitivity Masking: 
 
For improving the reliability of Algorithm 3 in (non-supervised) operations, we introduce a set of 
routines to exclude locations where our statistical model does not allow a robust decision between 
flood and non-flood condition. Consequently, the following masks (PLIA, distributions conflicts, 
outlier, and high uncertainty) are applied on the preliminary flood extent map obtained from the 
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Bayes decision. Figure 11 shows an exemplary overview of the applied low sensitivity masks over 
Greece. 

 
Flat areas are observed by Sentinel-1’s IW mode within a viewing angle between 29° and 46°. Since 
(flat) water surfaces fall per definition into this PLIA-interval, the collection of water backscatter 
samples (described above) was limited accordingly. To extend the flood mapping capabilities to e.g. 
onsets of hills, the allowed range is relaxed to 27° to 48°. In order to pre-filter the pixels which 
feature an exceeding PLIA-value (θ), the following PLIA mask is introduced: 
 

𝑚𝑃𝐿𝐼𝐴 =  𝜃 < 27° & 𝜃 > 48° Eq. 4-32 

 
Our algorithm detects flood if a normally non-flooded pixel is temporary inundated which implies 
the pixel features a higher backscatter than a respective water surface. Putting it into context, the 
non-flooded PDF needs to be overall higher than the flood PDF. Typical locations where this 
requirement is not fulfilled are e.g. permanent water bodies, asphalt surfaces, salt panes, or very 
dry sand- and bedrock-areas. In order to exclude these cases of conflicting distributions, a pixel is 
masked if the mean of the non-flood PDF is lower than the mean of the flood PDF raised by half the 
standard deviation of the water PDF: 
 

Figure 121: Example of low sensitivity masking in Algorithm 3 over Greece. 
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𝑚𝑑𝑐 =  𝑚𝑒𝑎𝑛( 𝜎𝑡,𝑟
0 ) <  𝑚𝑒𝑎𝑛( 𝜎𝑊,𝜃

0 ) +
1

2
 𝑠𝑡𝑑(𝜎𝑊,𝜃

0 ) Eq. 4-33 

 
Besides the above mentioned all-season low backscatter situations (e.g. permanent water bodies, 
water look-alikes, etc.), the backscatter could be low for some seasons of the year only (e.g. rainy 
season, snow melting, etc.). An example of a conflicting constellation from the flood and non-flood 
PDFs is given in Figure 12. The consideration of such seasonal effects is one of the main features of 
the used harmonic model approach (details given in Error! Reference source not found.). In that 
perspective, if the used input observations show regularly low backscatter within a certain season, 
the corresponding expected DOY backscatter represents this for the flood mapping unfavourable 
behaviour. Figure 13 shows an example over France (near the city of Angers) in January 2022, where 
the expected DOY backscatter (a) shows a large area of low backscatter pixels, which may be related 
to seasonal inundation. Indeed, similar inundations can be observed in other recent years (b – e) as 
well. The harmonic model was trained in the current version by data from the years 2019 – 2020, 
and hence appear to reflect the local dynamics in that perspective. 
 

Figure 12: Example of a conflicting distribution situation. 
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Figure 13: Example of the expected DOY backscatter compared to the Sentinel-1 observations 
from recent years (near the city of Angers, France). 

 
Our statistical model is trained to provide robust decisions on normal flood conditions. Therefore, a 
meaningful Bayes decision cannot be provided in case of the input Sentinel-1 backscatter value (σ0) 
not being represented by the flood or non-flood PDF. These extreme values could arise due to a 
statistical outlier for example and is masked by the following definition. Since it is assumed that the 
lower outliers of the flood PDF can still be classified as flooded, only higher outliers of the flooded 
PDF are considered within the masking. An example of an outlier observation is given in Figure 14. 
 

𝑚𝑜𝑢𝑡
𝑛𝑓

= 𝜎0 < 𝑚𝑒𝑎𝑛( 𝜎𝑡,𝑟
0 ) − 3𝑠𝑡𝑑(𝜎𝑡,𝑟

0 ) 𝑂𝑅 𝜎0 >  𝑚𝑒𝑎𝑛( 𝜎𝑡,𝑟
0 ) + 3𝑠𝑡𝑑(𝜎𝑡,𝑟

0 ) Eq. 4-34 

𝑚𝑜𝑢𝑡
𝑓

=  𝜎0 >  𝑚𝑒𝑎𝑛( 𝜎𝑊,𝜃
0 ) + 3𝑠𝑡𝑑(𝜎𝑊,𝜃

0 ) Eq. 4-35 

𝑚𝑜𝑢𝑡 = 𝑚𝑜𝑢𝑡
𝑛𝑓

𝐴𝑁𝐷 𝑚𝑜𝑢𝑡
𝑓

 Eq. 4-36 
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As the uncertainty (from the Bayes decision, details are given in Section 4.5.4) provides a measure 
for the confidence of the decision between flood and non-flood, it is used to limit the classification 
to certain decisions only. Therefore, we introduce a dedicated mask for high uncertainties which 
excludes pixels with uncertainties higher than 0.2: 
 

𝑚𝑐𝑒𝑟𝑡 = 0.2 <  𝑃(𝑒𝑟𝑟𝑜𝑟|𝜎0) Eq. 4-37 

 
An example of an uncertain decision is given in Figure 15. One can see that the incoming 
measurement is nearly equally probable to be assigned to one of the two classes (flooded and non-
flooded).  
 
 
 
 
 
 
 
 
 

Figure 14: Example of a detected outlier measurement. 
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Morphological post-processing: 
 
Due to the coherent nature of the radar signal, a single-time Sentinel-1 observation is in general 
affected by multiplicative noise (known as speckle). The random signal variation could lead to single 
pixels that feature a lower backscatter and could be confused with flood conditions. In order to 
reduce the influence of noise on the final flood extent map, a median filter of kernel size 5 is applied. 
This constitutes the final step and the result represents the flood extent and uncertainty output of 
algorithm 3. 

4.1.4 Ensemble flood mapping algorithm 

 
The GFM ensemble flood mapping algorithm combines the flood and likelihood results produced 
with all three individual flood mapping algorithms. The output is entirely pixel-based. A consensus 
decision of all algorithms, based on majority voting, determines if a pixel is marked as flooded or as 
non-flooded. To generate the combined product, each pixel is attributed with the ratio of the 
number of classifications as flooded to the number of algorithms that were applied. The value range 
is [0, 1] with: 
 

Figure 15: Example of pixel classification which shows a high uncertainty. 
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Table 5: Degree of consensus to determine if a pixel is classified as flooded in the ensemble flood 
map 

RATIO DESCRIPTION RESULT 

0.0 No algorithm classifies given pixel as flooded non-flooded 

0.3 Only 1 of 3 algorithms classifies pixel as flooded non-flooded 

0.6 2 of 3 algorithms classifies pixel as flooded flooded 

1.0 3 of 3 algorithms classifies pixel as flooded flooded 

 
A value of 1.0 means that all three algorithms agreed on its classification as being flooded. A pixel is 
classified as flooded if it was classified as flooded by at least two algorithms. 
 
The ensemble algorithm accepts Geotiff files for both the classification and uncertainty layers of 
each algorithm. The algorithm checks if all layers can be loaded. If a flood layer from one of the 
algorithms cannot be loaded, it is likely that the particular algorithm failed to produce a result. The 
number of algorithms applied equals to the number of flood layers that were loaded successfully, 
such that if one layer failed to load, the number of algorithms applied is 2. 
 
Each flood result from the algorithms is given between 0 and 1. If two algorithm results could be 
loaded and both algorithms agreed on a pixel as flooded, the final pixel would have a value 1.0. If 
two of the three algorithms that could be loaded classified a pixel as flooded, the resultant ratio is 
0.6. In the current implementation, only degrees of consensus ≥ 0.6 are considered in the ensemble 
computation.  
 

The final likelihood layer is generated as the arithmetic mean at each pixelwise location calculated 

with all likelihood layers provided by each of the algorithms. The term likelihood represents the 

classification accuracy of the respective binary class. Likelihood values lie in the interval [0, 100], 

where values toward 0 represents lower confidence and values toward 100 represents higher 

confidence of flood classification accuracy. A likelihood value of 50 separates both classes where 

non-flood pixels necessarily show likelihood values in the interval [0, 49] and flood pixels show 

likelihood values in the interval [50, 100]. The classification confidence of the respective class 

increases with likelihood values propagating to the lowest or highest class boundary. Non-flood 

likelihoods propagate towards 0 if the non-flood confidence is to increase. In contrast to that flood 

likelihoods propagate towards 100 if the flood confidence is to increase. 

As the TUW algorithm produces uncertainty values, TUW uncertainties have to be flipped so that 

low uncertainty values propagating towards 0 are remapped to high likelihood values propagating 

towards 100 and vice versa. 

 
A series of potential cases are presented to illustrate how the ensemble algorithm behaves. 
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Case 1: all algorithms produce inputs with full consent 
 
When all three flood algorithms return the same classification, the ensemble reflects this complete 
agreement. The final likelihood layer is the pixelwise mean of inputs from all three algorithm 
likelihood layers. 

 
Figure 16: An example of full consent (complete agreement) among all three algorithms and also 
resulted in a given pixel being classified with a higher likelihood of being flooded. 
 
 
Case 2: all algorithms produce inputs with majority consent 
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This is a variation of the usual case where all three algorithms produce inputs to the ensemble 
computation. If two of three algorithms agree that a pixel classification, the classification of the third 
algorithm is overruled. The likelihood result is the mean of all three likelihoods. 

 
Figure 17: An example of majority consent (partial agreement) among the three algorithms and 
resulted in a given pixel being classified with a medium likelihood of being non-flooded. 
 
 
Case 3: inputs from a single algorithm only 
 
There may be cases where certain algorithms fail to produce inputs for the ensemble computation. 
However, since the ensemble algorithm requires the availability of inputs from at least 2 algorithms, 
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if only one provides results, an empty raster is generated and all pixels are assigned the lowest 
likelihood value of 0. 

 
Figure 18: An example of classification and likelihood inputs being generated by a single algorithm 
only. Since the ensemble requires inputs from at least 2 algorithms, an empty flood classification 
raster is generated with the lowest likelihood of 0 assigned to each pixel. 
 
 
Case 4: inputs from two algorithms only 
 

In the unusual case that one algorithm fails to produce classification and likelihood inputs, the other 

two remaining algorithms decide on the flood classification For pixels where there is an agreement 
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between the two algorithms (Case 4A), the common classification is forwarded to the final result. 

This application is consistent with majority voting, which is the basis for the ensemble approach. For 

pixels where there is disagreement on the classification (Case 4B), i.e. one algorithm classified a 

given pixel as flooded while the other classified the same pixel as non-flooded, the pixel is assigned 

with the classification result that shows the highest confidence. The highest confidence is defined 

as the arithmetic distance to the basic likelihood interval boundaries [0, 100]. The likelihood value 

50 has the greatest arithmetic distance.  

In case of a split decision, the algorithm with the higher class confidence (greater distance from 

likelihood 50) overrules the detection from the algorithm with the lower class confidence (Case 4B). 

If both algorithms disagree on the flood classification but are equally confident in the respective 

class, the ensemble algorithm favours the flood detection over the non-flood detection (Case 4C). 

Case 4A: both algorithms agree on classification and have different likelihoods 
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Case 4B: algorithms disagree on classification 

 

 
Case 4C: algorithms disagree on classification and have equally strong likelihoods 
 
Figure 19: Examples of three cases when only two algorithms produce inputs, where there is 
agreement (Case 4A), disagreement with different likelihoods (Case 4B) and equally strong 
likelihoods (Case 4C) on the classification, respectively. 
 
We apply a region size dependant correction of the ensemble flood pixels and remove any flood 
pixel that forms a coherent region with its 8 neighbours and is less than a pre-defined blob size of 
60. The indices of the removed flood pixels are applied to the likelihood layer so both layers show a 
consistent handling of valid pixels. As non-flood pixels can have a maximum likelihood of only 49, 
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we correct the likelihood value of pixels that were changed due to their blob size. Pixels that were 
corrected had a likelihood value of at least 50 (denoting flood) and are now assigned with a 
likelihood value of 49, i.e. the highest likelihood value that is allowed for non-flood pixels. 
 
For all cases, we apply the reference water layer to the final flood and likelihood layers. This layer is 
comprised of both permanent and seasonal water extents. At any pixel location where there is the 
flood layer declares flood and the permanent or seasonal reference water layer also declare the 
presence of water, the pixel value of the flood layer is set to 0, i.e. no flood. 
 
In a final step, we apply an exclusion layer to the flood and likelihood layer, correcting pixels that 
were misclassified due to radar shadow, permanent low backscatter and urban areas. We also apply 
the Copernicus Water Body Mask masking out any oceanic area from the flood ensemble 
classification. 

4.2 Output layer “S-1 observed water extent” 

 
The GFM product output layer “S-1 observed water extent” identifies the pixels classified as open 
and calm water based on Sentinel-1 SAR backscatter intensity, and is derived by combining with a 
logical OR the ensemble flood map obtained with the algorithm described in section 4.1.4 and the 
seasonal water mask as described in section 4.3. While the floodwater extent is produced using an 
ensemble approach which use all three algorithms (i.e. LIST, DLR and TUW), the ensemble approach 
to provide permanent and seasonal water uses only two algorithms (i.e. LIST and DLR). The “S-1 
observed water extent” output layer values are described in Table 6. 
 

Table 6: Description of “S-1 observed water extent” output layer values. 
Value Description User Interpretation 

0 No Water No water detected on the Sentinel-1 image 

1 Water Water detected on the Sentinel-1 image 

NaN No data available No data available at location (i.e. not covered by the satellite). 

 

4.3 Output layer “S-1 reference water mask” 

 
The GFM product output layer “S-1 reference water mask” outlines pixels that are classified as 
water, both permanent and seasonal, by an ensemble water mapping algorithm and using Sentinel-
1 SAR mean backscatter intensity over a certain time period. The permanent water extent mapping 
is based on the mean backscatter of all Sentinel-1 data from a reference time period of two years. 
The seasonal reference water mapping uses as input the median backscatter of all Sentinel-1 data 
from a given month over the same reference time period. As a result, twelve masks are available, 
one per month, which include information on the permanent and seasonal reference water extent. 
The application of a permanent water mask is reliable in environments with stable hydrological 
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conditions over the year. In geographic regions with strong hydrological dynamics related to 
temporal change and variation in space of the water extent (e.g., in areas affected by monsoonal 
effects) the additional use of a seasonal reference water mask, which considers the usual water 
extent of the respective time period, is preferable. Figure 20 shows an example of reference water 
masks computed over a test area in Myanmar for the time-period 2019-01-01 to 2020-12-31. 
Seasonality, by means of monthly variations of water body areas, can be depicted and separated 
from permanent water bodies, which do not show alterations in their extent during the two years 
reference time-period. In Figure 20, each mask separates permanent water (pixels classified as 
water during the whole reference time-period) and seasonal water (pixels classified as water during 
a specific month within the reference time-period). 

 
 

Figure 20: Exemplary reference water masks computed over Myanmar for the time-period 2019-
01-01 to 2020-12-31. (See text for details). 
 
The reference water mask product is updated once a year considering the previous two years of 
observation. This means that for example, the flood monitoring system running in 2021 will rely on 
the Sentinel-1 reference water mask being extracted from the Sentinel-1 mean backscatter over the 
reference time period from 2019 and 2020. The reference period of two years is chosen as 
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compromise in order to base the computation on a sufficient number of Sentinel-1 data and to 
remove long-term hydrologic changes which would be integrated in the reference waters masks if 
longer time periods would be considered. The Sentinel-1 reference water mask product values are 
described in the following table. 
 
Table 7: Description of “S-1 reference water mask” output layer values. 
Value Description User Interpretation 

0 No Water Users can assume this location normally not affected by the presence 
of water. 

1 Permanent Water Body Users can assume this location permanently covered by water. 

2 Seasonal Water Body (for the current 
month) 

Users can assume this location seasonally covered by water. 

NaN No data available No data are available at this location (i.e., not covered by the satellite). 

 

Algorithm for generating the S-1 reference water mask: 

Observed permanent and seasonal water extent mapping is done by an ensemble water mapping 
algorithm that combines the water and uncertainty results produced with the LIST (section 3.1.3) 
and DLR (section 3.1.3) flood algorithms and having as input the mean backscattering value of S1 
images available over a two-year time period (for permanent water) or the mean backscattering 
value of S1 images available over a two-year time period per month (for seasonal water). The results 
of the single water extent maps are combined into twelve masks, one per month, which include 
information on the permanent and seasonal reference water extent.  
 
Both LIST and DLR flood algorithms produce a water extent map and associated likelihoods as by-
product of the flood detection. In particular, the step ii of the LIST algorithm is used, i.e. the one 
that map the water extent using a single image and a 1-D region growing as described in the section 
4.1.1. The TUW algorithm (section 3.1.3) is specifically designed to detect temporary flooded water 
bodies, does not produce a water extent map and hence is excluded for the more generic task of 
observed water extent mapping.  
 
Therefore, the ensemble water mapping algorithm follows the same logic as the flood ensemble 
algorithm (section 3.1.3) but is specifically targeted towards the task of water mapping from two 
(not three) input sources. This means that a consensus decision of the two algorithms decides if a 
pixel is marked as water or as no water. To generate the combined product, each pixel is attributed 
with the ratio of the number of water classifications to the number of algorithms that were applied. 
A number of 1 would mean that both algorithms agreed on its classification as water. For pixels 
where they disagree on the classification (one algorithm classified that pixel as water and the other 
algorithm classified that pixel as no water) the algorithm with the highest likelihood for that 
classification dictates the result. That means, if the first algorithm is certain that a pixel is water (its 
likelihood value is high) and the second algorithm declares the pixel as no water with a low 
classification accuracy (its likelihood value is low), the first algorithm classifying that pixel as water 
dictates the final result. The likelihood result is the mean of all providing likelihood values for that 
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pixel. If only one algorithm provides results, the final water and uncertainty values equal the results 
from that particular algorithm.  
 
Finally , for selected tiles where false negatives could be observed (e.g., large lakes with roughened 
surface that has falsely been classified as land) the Copernicus Water Body Mask is used to correct 
these. To enforce a consistent land-sea border, a land-sea mask derived from the Copernicus Water 
Body Mask is applied to all results. 

4.4 Output layer “Exclusion mask” 

 
The identification of conditions under which the GFM algorithms are deemed reliable is considered 
essential for an automated global flood monitoring system and is hence integral part during NRT 
flood detection and final product preparation. The key to a successful SAR-based identification and 
delineation of water bodies, and in subsequence of flood extents, is the low backscatter signature 
of water surfaces. Under common conditions, the water surfaces scanned by the SAR show 
significantly lower backscatter values than the surrounding area, the desired discrimination into 
water and non-water surfaces can be achieved with high accuracy and reliability. With the inclusion 
of information generated from time series stored in the datacube, additional discrimination 
criterions are established, further improving the reliability of the GFM flood extent. Nevertheless, 
there are several situations when the flood extent delineation is hampered, or even completely 
impeded, and where an Exclusion Mask is deemed necessary to prevent misclassification. 
 
First, the flood detection is challenged by non-water surfaces that feature low backscatter 
themselves and would yield false alarms when not treated properly. For instance, very dry or sandy 
soils, frozen ground, wet snow and flat impervious areas (e.g. smooth tarmac covers as airfields or 
roads) feature very low backscatter signatures and appear thus as water-look-alikes in SAR imagery. 
Another common effect in SAR remote sensing is radar shadowing, which appears over strong 
terrain (especially at the far-range section of the SAR image) as well as in the vicinity of high objects 
above the ground, like high buildings and along forest borders. Whereas the first can be recognised 
well with terrain- and observation geometry analysis, the second can only be identified by 
backscatter time series analysis, considering the global scope of the service (as real Digital Surface 
Models are only available for some areas). 
 
Second, floods occurring in urban or vegetated areas bear the danger of missed alarms, as co-
located flood extents potentially feature high instead of low backscatter. The formation of corner 
reflectors for the SAR’s microwaves through perpendicular buildings (urban) or plant stems 
(vegetation) over standing water surfaces leads generally to high backscatter and thus common SAR 
water mapping approaches fail in detecting water surfaces. Moreover, the detection of water-
bodies under densely vegetated canopies is complicated by the absorption and diffuse scattering in 
the canopy itself, reducing the sensitivity to processes on the ground. 
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The GFM product output layer “Exclusion Mask” addresses static topography and land cover effects, 
where the interaction of C-band microwaves with the land surface is in general complex. In several 
situations, flooded areas cannot be detected by Sentinel-1 C-band SAR over certain land cover types 
and terrain conditions for physical reasons. We grouped these reasons and defined four types: 
 

1. Sentinel-1 does not receive sufficiently strong signals from the ground surface to distinguish 
a flooded from a non-flooded surface. In such a case, we encounter No-Sensitivity to detect 
water surfaces. 

 
2. Sentinel-1 senses the ground, but backscatter from the non-flooded surface is in general so 

low as to be indistinguishable from backscatter from smooth open water. Here we encounter 
water-look-alikes due to a Low Backscatter signature of the ground. 

 
3. The Sentinel-1 signals are heavily distorted by terrain effects, effectively enhancing the noise 

and signal disturbances to such a degree to that it becomes larger than the change in 
backscatter due to potential flooding. As this problem generally occurs over areas with 
strong topography, we refer to this with Topographic Distortions. 

 
4. Sentinel-1 receives no signals from certain regions of the land surface due to Radar Shadows 

casted by mountains, high vegetation canopies or anthropogenic structures. 
 
Reflecting this grouping of physical and geometrical effects, we generate the Exclusion Mask by 
combining layers that address the four individual effect groups. With the addition of the no-data 
values from the expert flood detection algorithm output, it indicates on a binary map the pixel 
locations where the SAR data could not deliver the necessary information for robust flood 
delineation. With respect to the complexity of the identified effects, and to potential spatial 
overlaps and interactions, a combined, single Exclusion Mask that is also easy for the user to 
interpret, is provided. 

4.4.1 Algorithm for generating the Exclusion Mask 

 
The Exclusion Mask is based on offline-generated Sentinel-1 SAR parameters and on auxiliary 
thematic datasets. It is accessed and subset in NRT and added to the other product layers. The 
necessary operations are done at the 20m-sampling of the Sentinel-1 preprocessed data cube. In 
the following, we describe the methods to address the four types of disturbing effects. 
 
4.4.1.1 Masking of no-sensitivity areas 
 
The no-sensitivity layer delineates all land cover types and areas where Sentinel-1 CSAR is not 
sensitive to flooding – and in fact any other type of change – of the ground surface. These non-
sensitive areas encompass both densely vegetated- and urban areas. In both cases, the loss in 
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sensitivity reflects the fact that the Sentinel-1 signal is dominated by backscatter echoes from other 
parts of the observed scene. 
 
In the case of vegetation, backscatter from the vegetation canopy increasingly dominates the signals 
coming from the ground for increasing biomass levels. Given the limited penetration capability of 
C-band waves, Sentinel-1 becomes essentially insensitive to flooding over high biomass areas such 
as forests and shrubland with biomass levels larger than 30-50 t/ha Quegan et al., (2000). 
Backscatter from these high biomass land cover classes is in general rather stable and high, a feature 
that is often exploited in land cover classification schemes. 
 
To identify the densely vegetated areas, parameters from the Sentinel-1 Global Backscatter Model 

(S1-GBM) were used, namely the mean backscatter in VV (µ𝑉𝑉
𝜎0

) and VH (µ𝑉𝐻
𝜎0

) polarization, mean 

cross polarization ratio (µ𝐶𝑃𝑅
𝜎0

, computed as VV/VH backscatter) and standard deviation in VH 

polarization (𝑠𝑡𝑑(𝜎𝑉𝐻
𝜎0

)). Locally variable thresholds (𝜏𝑖) were defined for each parameter to 
discriminate between the vegetated and not vegetated areas setting the rule that the pixel is 
classified as dense vegetation in case that the following rules apply: 
 

𝑚𝑒𝑎𝑛( 𝜎𝑉𝑉
0 ) >  𝜏µ−𝑉𝑉 Eq. 4-38 

𝑚𝑒𝑎𝑛( 𝜎𝑉𝐻
0 ) <  𝜏µ−𝑉𝐻 Eq. 4-39 

𝑚𝑒𝑎𝑛( 𝜎𝐶𝑃𝑅
0 ) >  𝜏µ−𝐶𝑃𝑅 Eq. 4-40 

𝑠𝑡𝑑( 𝜎𝑉𝐻
0 ) >  𝜏𝜎−𝑉𝐻 Eq. 4-41 

 
The thresholds were optimized separately for each continent and varied with northing and 
vegetation type. The Global Forest Change dataset (Hansen et al., (2013); version 1.8: 
https://storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8/download.html) was 
used as a reference dataset for the threshold selection and is used directly as a dense vegetation 
mask in regions, where the irregular coverage of Sentinel-1 data caused artefacts (e.g. stripes of 
higher and lower backscatter) in the S1-GBM layers. The global distribution of the thresholds is 
shown in Figure 21. 
 

https://storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8/download.html
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Figure 21: Global distribution of thresholds used to identify densely vegetated areas using S1-
GBM and Global Forest Change dataset 
 
Over urban areas backscatter as measured by C-band SAR sensors is often dominated by comparably 
few, but very strong echoes received from buildings and other artificial objects (Sauer et al., 2011). 
The presence of large corner reflectors in form of buildings perpendicular to smooth horizontal 
ground create an extremely high backscatter signature, often close to saturation. Therefore, in the 
absence of sufficiently large open spaces between the buildings and urban vegetation, inundation 
in urban areas is difficult to detect. 
 
To identify the urban areas, GHSL and WSF2015 static urban masks were used. The urban areas 
were defined as pixels, where (i) the GHS-BUILD value exceeds 30% probability of built up area and 
(ii) are identified as settlements in WSF2015 urban mask. 
 
Lastly, the dense vegetation mask and urban areas mask were combined into the binary No-
sensitivity mask. 
 

4.4.1.2 Masking of non-water low backscatter areas 

 
There is another situation where Sentinel-1 is not sensitive to the flooding of the ground, but for 
quite a different reason as for vegetation and urban areas. In this second case, the lack of sensitivity 
is related to the fact that backscatter from rather smooth surfaces (smooth compared to the 5.5 cm 
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wavelength of Sentinel-1) can be as low as backscatter from a water surface. Smooth non-water 
surfaces may act similar like water as a specular reflector scattering most energy of the SAR signal 
in forward direction, leading to very low backscatter values. Examples of such permanently low-
backscatter areas are tarmacs (e.g. airports, motorways, etc.) or sandy surfaces (e.g. in riverbanks 
and deserts). The separation between water and smooth land surfaces based on a single SAR 
acquisition is hardly feasible. Therefore, the generation of a water look-alike layer with permanent 
low backscatter is performed based on statistical information from Sentinel-1 time-series data; 
pixels are masked in case that the occurrence of low backscatter values (below –15 dB) exceeds 70% 
of all values in the respective time-series. 
 
4.4.1.3 Masking of topographic distortions 
 
The consideration of information on local topography is essential to flood detection in two ways. 
There are areas that must be excluded during flood detection due to the geometry of the SAR 
observation – this is dealt with measures discussed in next subsection. 
 
Then there are areas that shall be excluded from flood detection because of the nature of the 
phenomenon itself, as floods appear commonly over non-sloped surfaces, in vicinity to streams, 
rivers, and other permanent water bodies. The latter is addressed by the Height Above Nearest 
Drainage (HAND) index. The consideration of the HAND index is of vital importance to the reliability 
of the flood detection algorithms, as SAR signal disturbances over strong topography can be 
substantial and dominate the surface backscatter signature, and its change over time, leading to 
otherwise uncontrollable over- and underestimation of flood indications. 
 
Based on the HAND index, a binary exclusion mask (termed ”HAND-EM”) has been calculated to 
separate flood-prone from non-flood prone areas based on the elevation of each pixel to the nearest 
water-covered pixel Twele et al., (2016); Chow et al. (2016), which we use as input the Exclusion 
Mask. 
 
Both binary classes are determined using an appropriate threshold value. Choosing the threshold 
value too high may lead to misclassifications (i.e. the inclusion of flood-lookalikes in areas much 
higher than the actual flood surface and drainage network) while a threshold value set too low 
would eliminate valid parts of the flood surface. The choice of an appropriate threshold is thus 
critical, and was derived through a series of empirical tests including more than 400 Sentinel-1 and 
TerraSAR-X datasets of different hydrological and topographical settings Twele et al., (2016). 
 
Due to the global application scope of the GFM Sentinel-1 flood processing chain, a rather 
conservative threshold value of ≥15 m was finally chosen for defining non-flood prone areas. The 
HAND-EM has been further shrunk by one pixel using an 8 neighbour function to account for 
potential geometric inaccuracies between the exclude layer and the radar data. 
 
It must be noted that the Copernicus DEM is not hydrologically conditioned, hence the HAND index 
cannot be computed on this version of the elevation model. 
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4.4.1.4 Masking of Sentinel-1 radar shadows 
 
Radar shadow is a term for unreachable areas by a radar signal, where no information can be gained. 
Such areas are commonly located in mountainous regions, around high anthropogenic structures, 
and along forest borders (forest lines). The extent of radar shadows increases with radar range, thus 
the far range section of a SAR scene is more affected by it. After preprocessing, radar shadow areas 
have extreme low backscatter values, and are therefore very likely to be confused with water 
surfaces leading to false alarms in flood detection. 
 
Radar shadows caused by mountains can be rather easily detected by analysing the SAR sensing 
geometry with respect to a Digital Elevation Model (DEM). This can be computed offline with a 
geometric observation model of the Sentinel-1 orbits, without using the Sentinel-1 SAR archive. 
 
However, a DEM may only describe the terrain elevation not the surface elevation or may have a 
too coarse resolution to catch finer details, thus it does not necessarily include anthropogenic 
structures or forests. The radar signal (at C-band) is mainly reflected at the surface leading to 
discrepancies with respect to a terrain model. Therefore, a geometric observation model is not 
applicable for such smaller structures causing radar shadows. For example, shadows on the 
boundary of a forest as shown in Figure 22 would be missed. Fortunately, we can make use of the 
fact that radar shadow depends also on the azimuthal looking angle and can be extracted by 
analyzing backscatter from multiple orbits in different orbit pass directions (ascending and 
descending). Radar shadow areas are characterized by huge differences in backscatter for opposite 
orbit directions, where one direction is prone to shadowing and the other to double bounce 
scattering effects causing high backscatter values. 
 
We analyze these differences for orbits of opposite directions, and generate a radar shadow mask 
for each Sentinel 1 relative orbit number (which feature a very stable viewing geometry): By 
comparing mean of backscatter at one orbit with mean of backscatter from orbits in the opposite 
direction, the extent of the orbit specific shadow areas can be estimated. 
 
For a given orbit, pixels will be masked as shadow, when the mean of backscatter at current orbit is 
less than -15 dB and mean of backscatter from orbits in the opposite direction is higher than -10 dB. 
(see also Figure 22 below for illustration). 
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Figure 22: Radar shadow effect on the boundary of forest (columns from left to right): mean 
backscatter from decending orbit 171, mean backscatter from ascending pass, Copernicus DEM, 
optical image from Mapbox satellite map 
 
Because of the new availability of the Copernicus DEM as a digital surface model with an appropriate 
spatial resolution it could be considered to derive a shadow mask based on a geometric observation 
model. However, a benchmarking of both outputs is missing, but due to its simplicity, computation 
time and independency on auxiliary data, preference is given to backscatter differences of opposite 
orbit directions. 
 
4.5 Output layer “Uncertainty values” 
 
The GFM product output layer “Likelihood values” provides the estimated likelihood that is 
associated with the applied GFM flood mapping algorithms, for all areas outside exclusion mask.  

4.5.1 Estimation of uncertainty for flood mapping algorithm 1 (LIST) 

 
The likelihood of floodwater classification is characterized by flood probability. In the case (i), both 
𝐼𝑡0

𝑆1 and 𝐼𝐷
𝑆1 are used for likelihood estimation, the pixels those have high posterior probability of 

both water class and change class are likely to be real flooded pixels. The probability of been flooded 
for a given pixel is defined as the minimum value between 𝑝(𝑊|𝜎0) and 𝑝(𝐶|∆𝜎0): 
 

𝑝(𝐹|𝜎0, ∆𝜎0 ) =  𝑚𝑖𝑛(𝑝(𝑊|𝜎0), 𝑝(𝐶|∆𝜎0)) Eq. 4-42 
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In the case (ii), only 𝐼𝑡0
𝑆1 is considered for likelihood estimation of flood classification: 

 
𝑝(𝐹|𝜎0 ) =  𝑝(𝑊|𝜎0) Eq. 4-43 

 
 
As in this case the likelihood is only calculated from the backscatter value in  
𝐼𝑡0

𝑆1, false high flood probability can be caused by permanent water and other water look-alike dark 
areas, these false alarms in binary map has been removed by comparing the resulting flood map 
with the previous flood map as described above. To reduce these false high probabilities in current 
likelihood map, for non-flood pixels in the new flood map, their flood probability is the minimum 
value between 𝑝(𝑊|𝜎0) and the value in the latest previous likelihood map. 
 
In both cases of (i) and (ii), the flood probability of pixels located in exclusion layers is set to 0. 

4.5.2 Estimation of uncertainty for flood mapping algorithm 2 (DLR) 

 

A fuzzy logic-based approach is applied to measure and to reduce the uncertainty associated with 

the water classification. Three cases influence the classification likelihood: 

 

1. The likelihood of a SAR backscatter pixel being classified as water is low if that pixel value is 

close to the threshold τ. 

 

2. The likelihood of a SAR backscatter pixel being classified as water is high if the slope at that 

location is low, since steeper surfaces are unlikely to retain water. 

 

3. The likelihood of a SAR backscatter pixel being classified as water is high if that pixel forms a 

coherent area with other neighbouring water pixels and the area is relatively large. 

 
Figure 23 demonstrates the fuzzy logic approach in detail for the first case considering the SAR 
backscatter likelihood. In Figure 23, the threshold τ of the parent tile is the upper fuzzy value x2 and 
separates the water and non-water (land) classes. This value represents the boundary of both 
classes, where the uncertainty of a correct classification is highest. The mean backscatter value of 
the class water µwater is associated with a lower fuzzy value. As the majority of water pixels share 
that backscatter value, the likelihood of a correct classification is high. In fuzzy logic terminology, 
high likelihoods map to high degrees of membership to a particular class, i.e. a high likelihood of a 
correct classification to the water class corresponds to a high degree of membership to the water 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 57 of 75 

 

class and is assigned a higher fuzzy value. The converse is also true, where a low likelihood 
corresponds to a low degree of membership to the water class and is assigned a low fuzzy value. 
 
In Figure 23, , SAR backscatter pixel values close to the threshold τ have a low likelihood of being 
correctly classified as water, since they may also belong to the non-water class, within the 
classification error range. Following the fuzzy logic terminology, SAR backscatter pixel values 
propagating to the threshold τ have a lower degree of membership to the class and are assigned a 
lower fuzzy value approaching 0. SAR backscatter values that are assigned to the water class and 
are also close to the class mean µwater have a higher certainty of being correctly classified as water. 
Therefore, they are assigned with a higher degree of membership to the water class and are 
assigned with higher fuzzy values approaching 1. 
 
 

 
 
Figure 23: Fuzzy logic approach for discriminating water and non-water classes based on SAR 
backscatter values. (See text for details). 
 
The diagram in Figure 23b depicts the membership function as the standard S-function, described 
in Pal et al. (1988). As high SAR backscatter values propagate to the threshold τ (low membership 
degree) and low SAR backscatter values propagate to the mean of the water class µwater (high 
membership degree), we negate the standard S-function ( 
 
Figure 24).  
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In Figure 24, the positive S-function applies when assigning low pixel values with a low degree of 
membership and high pixel values with a high degree of membership. The negative S-function 
applies vice versa. Any SAR backscatter value that is less than or equal to µwater is assigned a high 
degree of membership, thus a fuzzy value of 1. Any SAR backscatter value that is greater than or 
equal to τ is assigned a low degree of membership, thus a fuzzy value of 0. 
 
Slope values equal to 0 have a high degree of membership, thus a fuzzy value of 1. Any slope that is 
greater than or equal to an empirically determined value of 18° has a low degree of membership, 
thus a fuzzy value of 0. For the slope, we also apply the negative S-function. 
 
Considering the size of an area detected as water, we define a minimal, empirically determined 
mapping unit range of [10, 500], i.e. any water area with a size less than or equal to 10 pixels has a 
low degree of membership, thus a fuzzy value of 0. Any water area with a size greater than or equal 
to 500 has a high degree of membership, thus a fuzzy value of 1. For the minimal mapping unit, we 
apply the positive S-function. 
 

 
 
Figure 24: Standard S-function modified from Pal-Rosenfeld (1988). (See text for details). 
 
The result of the fuzzy logic approach are three fuzzy layers in the range [0, 1]. For performance 
reasons, the float values were rescaled to the range [0, 100]. The resulting fuzzy layer is the mean 
of all three individual fuzzy layers. 
 
A region-growing algorithm is applied as post-processing step, given the fuzzy layer and the initial 
water detection as inputs. 
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Water pixels with a fuzzy value of ≥ 0.6 are treated as correct water classifications. Water pixels with 
a fuzzy value of ≥ 0.45 and < 0.6 are treated as potential water pixels that are subject to region-
growing. 
 
Water pixels with a high fuzzy value of ≥ 0.7 are treated as seed pixels. Any potential water pixel, 
i.e. with a fuzzy value of ≥ 0.45 and < 0.6, that is also directly adjacent to a seed pixel is then 
remapped as a certain water pixel. As the original fuzzy value of that pixel was below the critical 
certainty mark of 0.6, we also remap the fuzzy value to the lowest uncertainty corresponding to the 
water class, i.e. 0.6. 
 
As a final step, we further modify water detections based on the size of the region in which they are 
located. A region detected as water must have a minimum size of 30 pixels. Otherwise, that region 
is treated as a misclassification and remapped as land. The converse is also true, such that a region 
detected as land must have a minimal size of 10 pixels. Otherwise, the region is treated as a 
misclassification and remapped as water. 
 
Any original water region that is remapped is assigned a fuzzy value representing land with a low 
classification accuracy, i.e. 0.45. Any original land region that is remapped as water is assigned a 
fuzzy value indicating water with a low classification accuracy, i.e. 0.6. 

4.5.3 Estimation of uncertainty for flood mapping algorithm 3 (TUW) 

 
As mentioned in Section 4.1.4, Algorithm 3 Bauer-Marschallinger et al, (2021) yields posterior 
probabilities of a backscatter measurement for belonging to either the flood or non-flood class. 
Based on the Bayes decision rule the higher posterior probability defines the class allocation. 
Additionally, the conditional error 𝑃(𝑒𝑟𝑟𝑜𝑟|𝜎0) can be defined by the lower posterior probability.  
 

𝑷(𝒆𝒓𝒓𝒐𝒓|𝝈𝟎) = 𝐦𝐢𝐧 [𝑷(𝑭|𝝈𝟎), 𝑷(𝑵𝑭|𝝈𝟎)]  Eq. 4-44 

 
The conditional error as measure for the uncertainty allows directly to quantify the (non-) 
confidence of the provided decision. Since per definition the posterior probabilities sum up to 1, a 
higher posterior probability for one class results in a lower posterior probability for the other class. 
Consequently, the uncertainty is defined between 0.0 and 0.5. An uncertainty close to zero implies 
a very confident decision, since the probabilities for both classes (flood and non-flood) support a 
clear decision. The opposite condition would be an uncertainty of close to 0.5, which implies that 
the probabilities of the input Sentinel-1 value belonging to the two classes is nearly identical. 
 
For all pixels of the incoming Sentinel-1 image, the conditional errors (𝑃(𝑒𝑟𝑟𝑜𝑟|𝜎0)) are forwarded 
to the ensemble algorithm, representing the uncertainties of Algorithm 3’s flood mapping, per 
individual pixel. 
 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 60 of 75 

 

In case of high conditional errors (i.e. close to 0.5), no certain decision can be made. In order to 
exclude such poorly based decisions (with low reliability), a dedicated uncertainty mask is already 
applied in Algorithm 3 (see Section 4.1.4 for more details). 
 
 

4.6 Output layer “Advisory flags” 

 
Various meteorological factors may hamper or even prevent the detection of flooded areas. As 
discussed by Matgen et al. (2019) strong winds, rainfall, as well as the presence of wet snow, frost 
and dry soils are of particular concern. These factors are all important because they reduce the 
contrast between backscatter from open water surfaces and backscatter from the surrounding 
areas, thereby reducing the separability of flooded areas and surrounding land. While wind, frozen 
water surface and rainfall might reduce the backscatter contrast by increasing backscatter over 
water due to wind- and rainfall-induced roughening of the water surface, wet snow, frost and dry 
soils reduce the contrast by decreasing backscatter over the surrounding areas. 
 
Unfortunately, all these factors are difficult to capture because of their extremely dynamic nature 
and high spatial heterogeneity. Therefore, wind, rainfall, temperature, and snow data coming from 
sparsely distributed meteorological stations and/or numerical weather prediction with its much 
coarser resolution are hardly suited to capture the exact situation at the time of the S-1 acquisition 
and are not ideal for providing the required advisory flags. It should be noted that optical remote 
sensing satellites such as MODIS or Sentinel-3 would provide sufficient spatial details, but neither 
do optical data depict the environmental conditions as seen by Sentinel-1, nor do they provide 
timely observations at all times due to cloud cover and poor lightning conditions. Therefore, in the 
scope of the GFM service, the only robust and applicable source for the environmental advisory 
flags is microwave remote sensing data. Our approach builds on using the S-1 NRT data and Sentinel 
temporal parameters (see section 3.1.2) that were derived from time series within the Sentinel-1 
data cube archive. 
 
The GFM product output layer “Advisory flags” aims for raising awareness that meteorological 
processes comprising wind or frozen conditions might impair the water body detection. As the here 
defined Advisory Flags can only be retrieved at a coarser resolution, we do not forward the 
information of the flags to the masking or to the Exclusion Mask. As coming in the form of the 
additional layer, it should guide the users when interpreting the product, allowing additional insight 
on its local reliability at the time of Sentinel-1 acquisition. The Advisory Flags indicate locations 
where the SAR data might be disturbed by such processes during the acquisition, but leaves the 
flood and water extent layers unmasked. In summary, pixels marked by the Advisory Flag are not 
excluded by the Exclusion Mask, but users are advised caution when using the observed water and 
flood extents over flagged areas. As outlined in the following section, the Advisory Flag layer consists 
of 2 separate flags, defining 4 potential flag values: 
 



 

Provision of an Automated, Global, Satellite-based 

Flood Monitoring Product for CEMS 

Issue: 1 Version:1.1 

Date: 23.09.2021 

 

Title: Product Definition Document (PDD) © The Expert Flood Monitoring Alliance 

ID: GFM D6 Product Definition Document  Page 61 of 75 

 

VALUE DESCRIPTION USER INTERPRETATION 

0 No Advisory Flag was set Users can assume high quality 

1 Low Regional Backscatter 
(Snow, Ice, or Dryness) 

Users are advised to caution, due to frozen or dry or snow-covered soil 
affecting the Flood mapping reliability. 

2 Rough Water Surface (Wind, 
rainfall, or frozen water surface) 

Users are advised to caution, due to local wind, rainfall, or frozen water 
surface affecting the Flood mapping reliability. 

3 Both: Low Regional Backscatter 
& Rough Water Surface  

Users are advised to caution, due to frozen or dry or snow-covered soil 
& local wind, rainfall, or frozen water surface affecting the Flood 
mapping reliability. 

 
Figure 25 shows an example of the output layer “Advisory flags” for a Sentinel-1 scene over Greece 
from 2020-08-10 at 16:32 (from orbit A175), a point in time when windy conditions where prevalent. 
In Figure 25, the Advisory flags are overlaid on the backscatter image with transparent colours, with 
red for Low Regional Backscatter (Snow, Ice, or Dryness), green for Rough Water Surface (Wind), 
and blue for both. 
 

 
 
Figure 25: Example of the GFM product output layer “Advisory flags” for a Sentinel-1 scene over 
Greece from 2020-08-10 at 16:32 (from orbit A175), a point in time when windy conditions where 
prevalent. (See text for details).  

4.6.1 Algorithm for generating the Advisory flags 
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For the Advisory Flag layer production, we need to combine the near real-time input data flow, as 
well as read out the corresponding statistical parameters and auxiliary layers. After processing the 
flood extent for the incoming Sentinel-1 scene, the involved Equi7Grid-tiles are identified, and the 
collocated parameters and auxiliary layers are read from the database. Figure 26 illustrates the data 
flow and how the flag values are set logically. 
 

 
 
Figure 26: Advisory Flag workflow combining the low regional backscatter flag (Flag 1) and the 
rough water surface flag (Flag 2). The final Advisory Flags layer includes four values, 0 if no 
dynamic influence is present, 1 for Flag 1, 2 for Flag 2, and 3 if both flags are true. 
 
4.6.1.1 Low Regional Backscatter Flag 
 
During the snow accumulation period, dry snow and ice-packs are almost transparent to 
microwaves. As a result, the SAR signal penetrates the snow / ice-pack up to several meters and the 
main contribution to the backscattering is from the snow–ground interface Rott  et al. (1987). During 
the melting period, however, the increase of the amount of free liquid water inside the snow and 
ice bodies causes high dielectric losses, thereby increasing the absorption coefficient, featuring very 
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low backscatter. In addition, the occurrence of meltwater puddles might change the backscattering 
behaviour of the surface, leading to components with specular microwave reflection, further 
decreasing the received amplitude at the sensor. Such patches of very low backscatter from those 
combined effects act easily as water-look-alikes and are source of false alarms. 
 
Similarly, frozen soils with no free liquid water components in the upper soil layers show very low 
backscatter signatures, appearing from the radar perspective as quasi-dry soils. Dried out soils are 
a globally more common issue for water and flood body detection, they often show backscatter 
values at the same low level as calm water bodies. This ambiguity is hard to come by even with 
exploitation of time series analysis and statistical parametrisation, as the occurrence of dried soils 
is as erratic and a-priori unpredictable as flood events. 
 
 
Low backscatter over large regions characterizes all the above-described effects. Thus, to derive an 
Advisory Flag 1 called “Low Regional Backscatter”, we resample the Sentinel-1 acquisitions to 20 km 
resolution and compare the regional backscatter to the regional monthly grouped median value 
(see section 3.1.2) which represents seasonal backscatter signature of the corresponding region. 
Prior to resampling, each acquisition as well as the median image is masked using the reference 
water mask (see section 4.3), radar shadow mask (see section 4.4.1.3) and build-up area mask (see 
section 3.2.5). The difference between regional backscatter and regional monthly grouped median 
backscatter reveals regionally low backscatter values that are likely to be caused by snow, frost or 
dry conditions while taking the seasonal variations due to e.g., annual changes in vegetation cover 
into account. On the condition, that this difference exceeds 1 dB, the low backscatter flag is set to 
value “1”: 
 

𝒎𝒆𝒅𝒊𝒂𝒏(𝒔𝒊𝒈𝑺𝟏
𝟎 ) > 𝒔𝒊𝒈𝑺𝟏

𝟎 + 𝟏𝒅𝑩 → 𝑭𝒍𝒂𝒈 = 𝟏  Eq. 4-45  

 

 

These values are subsequently resampled to the 20m pixel sampling and a simple radial buffer of 14 
km radius is applied to the identified pixels with regionally low backscatter. 
 
Known limitation of the used approach is the low number of flagged data in areas, where frozen or 
dry conditions are typical for full months (e.g., permanently frozen soil during winter months in 
northern regions). 
 
4.6.1.2 Rough Water Surface Flag 
 
Wind, strong rainfall or frozen water surface over flood surfaces can lead to missed alarms, as they  
undermine the initial assumption of low backscatter due to specular reflection on smooth water 
surfaces. As a response to wind stress, short waves on the order of centimetres to decimetres are 
formed at the water surface causing an enhanced backscatter signal that occurs due to a 
constructive interference that reinforces the backscatter signal. This effect is called Bragg resonance 
effect and is dependent on wind speed and direction as well as on the radar wavelength. For C-
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Band, the minimum threshold wind speed that can cause this effect and thus enhance the 
backscatter from water surface is estimated to be 3.3 m/s. Similarly, strong rainfall events roughen 
the water surface and thus lead to the enhanced backscatter. In case of the frozen lake surface, the 
enhanced backscatter values are caused by the scattering from water/ice transitions. For the 
detection of these effects, we make use of the backscatter signature of permanent water bodies 
inferred from time series within the Sentinel-1 data cube archive. 
 
We examine the NRT 20m Sentinel-1 backscatter data over the areas identified by the reference 
water mask (see section 4.3) and additional criteria based on backscatter. Concretely, for the pixel 
to be identified as water and used for the rough water surface flag decision, it needs to be identified 
as permanent or seasonal water body by the reference water mask of the given month and it has to 
have backscatter value below –10 dB and reference backscatter value (represented by the 5th 
percentile of Sentinel-1 sig0 backscatter) below –20 dB. The criteria based on backscatter are 
needed, as the water bodies shape might deviate from the seasonally defined reference water mask. 
For this reason, masking of very high backscatter values helps to avoid the situation, that the rough 
water surface mask would be issued due to the change of the water body shape instead of due to 
the roughening of its surface.  
 
Over the identified water pixels, we examine, whether the backscatter deviates from a calm water 
signature. In the case of a roughened water surface, it is most likely to observe increased backscatter 
that is indicative of strong winds, rainfall, or frozen water surface, which in turn are likely to increase 
the backscatter from the nearby water surfaces over the flooded areas too. 
 
For the calm water signature, we chose the 5th percentile of Sentinel-1 sig0 backscatter (see section 
3.1.2) as baseline. An analysis of backscatter images at windy conditions led to the selection of 7dB 
difference as a threshold to distinguish rough from non-rough water surfaces, with respect to the 
local calm water signature. On the condition that this limit is exceeded over water surface, we set, 
on the 20m pixel scale, the rough water surface flag to value “2”: 
 

𝒑𝟓%(𝒔𝒊𝒈𝑺𝟏_𝒘𝒂𝒕𝒆𝒓
𝟎 ) + 𝟕𝒅𝑩 < 𝒔𝒊𝒈𝑺𝟏_𝒘𝒂𝒕𝒆𝒓

𝟎 → 𝑭𝒍𝒂𝒈 = 𝟐    Eq. 4-45 

 
As a final step, all pixels identified as roughened permanent water bodies are spatially filtered by 
using morphological operations. On the assumption that wind, rainfall or frozen water surface 
induced patterns are highly correlated within the neighbouring area, a simple L2/radial buffer of 
5km radius is applied to the identified rough-water-surface-pixels, effectively enlarging the 
identified area. All pixels within the buffered area are labelled with the Advisory Flag 2 called “Rough 
Water Surface”. This should also reflect the initial expectation that the majority of floods appear in 
the vicinity of rivers and permanent or seasonal water bodies, and the wind flag is needed by users 
in those areas. 
 
It should be noted that this realisation of the wind flag constitutes the initial version here in GFM. 
We foresee tweaking and optimisation (in respect to the 7dB threshold and the 5km radius) towards 
the alert accuracy, once more experience within the operational service is gained. 
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Finally, the 20m pixel array for the Advisory Flag is obtained from the combination of both 
intermediate flag outputs. All pixel locations that have values in the incoming Sentinel-1 image are 
initiated with value 0, and are updated with the following operation: 
 

𝟎 +  𝒊𝒏𝒅𝑳𝒐𝒘𝑩𝑺𝑭𝒍𝒂𝒈 ∗ 𝟏 + 𝒊𝒏𝒅𝑾𝒊𝒏𝒅𝑭𝒍𝒂𝒈 ∗ 𝟐      Eq. 4-46 

 
Effectively, all pixels with no flag set get the value 0, and all pixels where both flags are set get the 
value 3. 
 
Known limitation of the used approach are flags that are issued due to the land cover change (e.g. 
water body changed its shape when compared to the reference water mask and the enhanced 
backscatter caused by this change is misinterpreted as roughened water surface). Generally, the 
quality of this flag is strongly dependent on the quality and topicality of the reference water mask. 
 
4.7 Output layer “S-1 metadata” 
 
The GFM product output layer “S-1 metadata” consists of all available metadata attributes provided 
with each Sentinel-1 GRD data product used in the generation of the global flood monitoring 
product. Metadata of each Sentinel-1 GRD scene is encompassed in the distributed Sentinel 
“Standard Archive Format for Europe (SAFE)” format included in the “manifest.safe” file. The 
manifest file is an XML file containing the mandatory product metadata. Attributes contained in the 
manifest file are classified into four categories: summary, product, platform, and instrument. 
Platform and instrument related attributes are considered as static for the different Sentinel-1 
satellites. A total number of 29 attributes are contained in the manifest file such as information 
about the absolute orbit number, pass direction, polarisation, sensing start and end date and the 
product timeliness category. An abstract of the included attributes is given in hereafter as an 
example. 
 

Table 8: Example of metadata fields available in the corresponding layer. 

Acquisition Type: NOMINAL 
Cycle number: 201 
Footprint:<gml:Polygon srsName="http://www.opengis.net/gml/srs/epsg.xml#4326" xmlns:gml="http://www.opengis.net/gml"> 
<gml:outerBoundaryIs> <gml:LinearRing> <gml:coordinates>43.920486,20.600445 44.328014,23.858505 42.829479,24.188070 
42.421612,21.009506 43.920486,20.600445</gml:coordinates> </gml:LinearRing> </gml:outerBoundaryIs> </gml:Polygon> 
Format: SAFE 
Ingestion Date: 2020-05-25T20:19:46.329Z 
JTS footprint: MULTIPOLYGON (((21.009506 42.421612, 24.18807 42.829479, 23.858505 44.328014, 20.600445 43.920486, 
21.009506 42.421612))) 
Mission datatake id: 248418 
Orbit number (start): 32724 
Orbit number (stop): 32724 
Pass direction: ASCENDING 
Phase identifier: 1 
Polarisation: VV VH 
Product class: S 
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Product class description: SAR Standard L1 Product 
Product composition: Slice 
Product level: L1 
Product type: GRD 
Relative orbit (start): 102 
Relative orbit (stop): 102 
Resolution: High 
Sensing start: 2020-05-25T16:25:04.241Z 
Sensing stop: 2020-05-25T16:25:29.239Z 
Slice number: 9 
Start relative orbit number: 102 
Status: ARCHIVED 
Stop relative orbit number: 102 
Timeliness Category: Fast-24h  

 
4.8 Output layer “S-1 footprint” 
 
The footprint of a Sentinel-1 GRD scene as provided in each data product is included in the before 
discussed manifest file. The footprint is represented as human readable Java Topology Suite (JTS) 
object named “JTS footprint”. The JTS footprint is converted into Well-known Text (WKT) and Well-
known Binary (WKB) in the process of parsing and ingesting the acquired manifest files into the 
operated metadata database. WKT and WKB are originally defined by the Open Geospatial 
Consortium (OGC) to describe simple features. On-the-fly conversion to GeoJson is provided to 
aggregate the requested footprint features into the corresponding layer request by the user. 

4.9 Output layer “S-1 schedule” 

 
Sentinel-1 observations follow a strict acquisition planning often referred to as acquisition 
segments. Information on the planned future acquisition is provided by ESA in form of Keyhole 
Markup Language (KML) files. A single file usually covers an acquisition period of about 12 days, with 
the start and stop time of the future planned acquisitions already given in the file name. KML files 
are publish by ESA on a regular base, well before activation, with potential last-minute changes due 
to requests from the Copernicus Emergency Management Service. Information provided by the KML 
files are organized based on the planned data takes. Parameters listed in following table are 
included in the KML. KML files are regularly checked, downloaded and ingested into the described 
metadata database for further analysis. All parameters are exposed in the layer to extract the 
requested schedule information indicating the next planned Sentinel-1 GRD acquisition for a given 
location. 
 
Table 9: Information provided with the next planned Sentinel-1 GRD acquisition. 

PARAMETER DESCRIPTION 

Satellite ID Satellite identifier.  

DatatakeId Corresponds to a unique product identifier (Hexadecimal value). This identifier is also reported 
in the filename of any product generated from this acquisition.  
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Mode Instrument acquisition mode (IW, EW, SM)  

Swath Instrument swath (from 1 to 6 for SM, not applicable for IW and EW)  

Polarisation Instrument polarisation for the acquired data take.  

ObservationTimeStart UTC start date and time of the planned data take  

ObservationTimeStop UTC stop date and time of the planned data take  

ObservationDuration Duration of the planned data take in seconds  

OrbitAbsolute Absolute orbit number at the start time of the data take  

OrbitRelative Relative orbit number at the start time of the data take  

 
4.10 Output layer “Affected population” 
 
The information about the affected population is extracted from the Global Human Settlement 
Layer (GHSL), in particular the GHS-POP dataset. This data contains a raster representation of the 
population’s distribution and density as the number of people living within each grid cell. The 
information is available at various spatial resolutions and for different epochs. For the GFM service, 
we will consider the dataset at 250m resolution (highest possible resolution) and for the latest 
available time-step, 2015. 
 
The dataset was re-projected to the same grid system as the flood map itself, which is the Equi7Grid 
with a 20m pixel-spacing and a 300km gridding (T3 level). Furthermore, the data was resampled 
from 250m to 20m resolution. 

4.11 Output layer “Affected land cover” 

 
Land cover information is extracted from the Copernicus Land Monitoring Service making use of the 
Global Land Cover dataset which is available at a global level with a resolution of 100m. The 
Copernicus Global Land Cover3 includes 23 classes and provides annual updates. The dataset was 
reprojected to the same grid system as the flood map itself, which is the Equi7Grid with a 20m pixel-
spacing and a 300km gridding (T3 level). The data was then resampled from 100m to 20m resolution. 
 
This information provides a first assessment of affected land cover or land use types, e.g. how much 
agricultural area is affected by the flood within the flood extent area or the area of interest. 

5 Product access and dissemination system for the GFM product 

 
The Product and Dissemination API is documented by using Swagger UI and can be accessed at the 
following web-link: https://api.gfm.geoville.com/v1/ 
 
Swagger UI allows anyone - be it your development team or your end consumers - to visualize and 
interact with the API’s resources without having any of the implementation logic in place. It’s 

https://api.gfm.geoville.com/v1/
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automatically generated from your OpenAPI (formerly known as Swagger) Specification, with the 
visual documentation making it easy for back end implementation and client side consumption. 

6 Quality control of the GFM product 

 
The various quality control (QC) methods which are used to measure, on a regular basis, the product 
and service quality of the Global Flood Monitoring (GFM) product, are summarized in Table 10: 
Summary of quality control (QC) methods applied to the Global Flood Monitoring (GFM) product. 
 
Table 10: Summary of quality control (QC) methods applied to the Global Flood Monitoring (GFM) 
product. 

QC OBJECTIVE QC METHOD 

Regular assessment of thematic 
accuracy: 

▪ Implementation of automated, continuous QC procedures to ensure that all 
input and output data undergoes a quality check before releasing the data to the 
dissemination system. 
▪ Implementation of systematic quality control review to check product 
consistency and accordance with product specifications. 
▪ Systematic thematic quality assessment based on worldwide distributed 
reference samples and representative set of flood cases considering systematic and 
stratified sampling approaches. 

Regular checking and monitoring 
of product timeliness: 

▪ Implementation of automated and continuous monitoring of the data flow 
throughout the entire service from data acquisition to the product delivery to the user. 
▪ Systematic use and monitoring of metadata inherent to data products and the 
processing platform to check product timeliness after each task in the product 
generation workflow. 

Regular checking and monitoring 
of service availability: 

▪ Establishing an active and continuous health check monitoring system 
scraping health check metrics over time enabling an instant alerting mechanism based 
on a strict threshold-based detection of negative service performances. 
▪ Anonymous usage statistics are collected in a time-series database to analyse 
user uptake on a regular interval to deduce measures to enhance the user experience. 
▪ Realisation of fully automated test-bots to simulate defined user service 
interactions to check and monitor the service performance experience in view of the 
user. 
▪ Regular online surveys to collect user feedback to assess and act on changing 
user requirements. 

Detailed overall quality 
assessment of the GFM product: 

▪ Pre-operational product and service quality assessment report. 
▪ Annual product and service quality assessment reports. 
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A1, a2 Scale factors set to the maxima of the image distribution functions 

A, b Updatable greyscale values 

Bc Bhattacharyya coefficient 

Bm Bimodal mask 

C² Tile size (c= 200 pixels) 

𝐶𝑖  Harmonic coefficients of the cosine components 

C Class?? 

𝐶1, 𝐶2, 𝐶3 Bimodal conditions 

𝐹𝑀𝑡0 New floodwater map 

𝐹𝑀𝑡−1 Previous floodwater map 

G Histogram bin 

𝐺1(𝑦), 𝐺2(𝑦) Gaussian distribution functions 

𝐺1
𝐵𝑀(𝑦), 𝐺2

𝐵𝑀(𝑦) Gaussian distributions of the two classes of interest 

ℎ𝑒𝑙𝑙𝑖𝑝𝑠  Ellipsoidal height 

H Orthometric height 

ℎ𝑓(𝑦) Image fitted histogram 

ℎ(𝐼[𝑆𝑗
𝑖]) Image tile histogram 

H(g) Sar backscatter histogram 

I Sar image 

𝐼𝐷
𝑆1 Current and previous sentinel-1 image difference 

𝐼𝑡0
𝑆1 Current sentinel-1 image  

𝐼𝑡−1
𝑆1  Previous sentinel-1 image 

K Number of sine and cosine terms in the harmonic model 

𝑚𝑜𝑢𝑡
𝑓

 Flood mask of statistical outliers 

𝑚𝑃𝐿𝐼𝐴 Mask of exceeding plia 

𝑚𝐷𝐶  Mask of conflicting distributions 

𝑚𝑜𝑢𝑡
𝑛𝑓

 Non-flood mask of statistical outliers 

𝑚𝑜𝑢𝑡 Mask of statistical outliers 

𝑚𝑐𝑒𝑟𝑡  Mask for high uncertainties 

𝑁𝑔𝑒𝑜𝑖𝑑  Geoid undulations 

Nw Non-water 

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 Number of data points 

𝑁𝑡𝑖𝑙𝑒𝑠  Number of overlapping subsets (tiles) 

𝑁𝑛𝑜𝑑𝑒𝑠  Number of tree level 

𝑝(𝜎0) Marginal distribution of backscatter values 

𝑃(𝑊), 𝑃(𝑁𝑊) Water and non-water prior probabilities 

𝑃(𝐶), 𝑃(𝑁𝐶) Change and non-change prior probabilities 

𝑝(𝜎0|𝑁𝑊) Conditional pdf of the non-water backscatter  

𝑝(𝜎0|𝑊) Conditional pdf of the water backscatter  

𝑝(𝜎0|𝐹) Conditional pdf of the water’s flood backscatter 

𝑝(𝜎0|𝑁𝐹) Conditional pdf of the non-flood backscatter 

𝑝(𝑊|𝜎0) Posterior probability of water 

𝑝(∆𝜎0) Marginal distribution of backscatter difference values 

𝑝(𝐶|∆𝜎0) Posterior probability of change 

𝑝(∆𝜎0|𝐶), 𝑝(∆𝜎0|𝑁𝐶) Conditional probabilities of change and non-change classes 

𝑃(𝐹|𝜎0), 𝑃(𝑁𝐹|𝜎0) Flood and non-flood posterior probability 

𝑝(𝐹|𝜎0, ∆𝜎0 ), 𝑝(𝐹|𝜎0 ) Conditional probability of a given pixel being flooded given its backscatter and 
backscatter difference values 

𝑃𝑖(𝑇) Summed-up histogram h(g) 
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𝑃(𝑒𝑟𝑟𝑜𝑟|𝜎0) Conditional error p 

𝑟 Relative orbit 

S- Child tile (sub-tile) 

Sn Ensemble of nodes in the lowest level tiles 

𝑆𝑛𝑜𝑑𝑒𝑠 Ensemble of tree nodes 

𝑆𝑖  Harmonic coefficients of the sine components 

S Image tile 

S+ Parent tile 

S0 Root node 

𝑠 Standard deviation of the harmonic model 

S-function Standard s-function 

Sr Surface ratio 

𝑡 Day 

𝑡𝑑𝑎𝑦 Day of the year 

W Water 

Y Image measurement 

𝜃 Incidence angle 

𝜇𝑖(𝑇) Geometric centroid of the separated class 

Μ1, μ2 Mean distribution values for 𝐺1(𝑦), 𝐺2(𝑦)  

µ𝑉𝐻
𝜎0

 Mean backscatter in vh 

µ𝑉𝑉
𝜎0

 Mean backscatter in vv 

µglobal Mean backscatter value 

µ- Mean backscatter value of one tile s- 

µ+ Mean backscatter value of one tile s+ 

µ𝐶𝑃𝑅
𝜎0

 Mean cross polarization ratio 

𝜇𝜎𝜇
+  Mean of all standard deviations σµ

+ 

µwater Mean of the water class 

𝜎0 Radar (sar) backscatter value (sigma nought) 

𝜎0̅̅ ̅ Average sar backscatter for the time period 

𝜎𝑟
0 Backscatter time-series of a specific pixel and relative orbit r 

𝜎1, 𝜎2 Distribution standard deviation values 

𝜎𝑡,𝑟
0  Backscatter from a specific pixel, day of year t and relative orbit r 

�̂�𝑡,𝑟
0  Estimated backscatter from the harmonic model for any given day of year t and relative 

orbit r 

�̂�𝑡𝑑𝑎𝑦

0  Most probable radar backscatter 

𝜎𝑉𝐻
𝜎0

 Standard deviation in vh polarization 

𝜎𝜎𝜇
+  Standard deviation of all standard deviations σµ

+ 

Σµ
+ Standard deviation of the child tiles mean backscatter (µ-) 

𝜎𝑡,𝑟
0̂  The expected backscatter of the harmonic model 

𝜎𝑊,𝜃
0  Various backscatter observations along the incidence angle 

𝜏 Final threshold 

𝜏𝑖  Locally variable thresholds 

𝜏𝑂𝑡𝑠𝑢 Otsu threshold 

Τ+ Thresholds of the parent tiles 
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